TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Regional and Local Setting</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Project Description and Location</td>
<td>1</td>
</tr>
<tr>
<td>1.2.1 Overview</td>
<td>1</td>
</tr>
<tr>
<td>1.2.2 Proposed Project Details</td>
<td>2</td>
</tr>
<tr>
<td>2 METHODOLOGY</td>
<td>15</td>
</tr>
<tr>
<td>2.1 Records Search</td>
<td>15</td>
</tr>
<tr>
<td>2.2 Native American Coordination</td>
<td>15</td>
</tr>
<tr>
<td>2.3 Cultural Resources Survey</td>
<td>15</td>
</tr>
<tr>
<td>2.4 Building Research</td>
<td>16</td>
</tr>
<tr>
<td>3 EXISTING CONDITIONS</td>
<td>17</td>
</tr>
<tr>
<td>3.1 Regulatory Setting</td>
<td>17</td>
</tr>
<tr>
<td>3.1.1 State</td>
<td>17</td>
</tr>
<tr>
<td>3.1.2 Local</td>
<td>21</td>
</tr>
<tr>
<td>3.2 Existing Environmental Setting</td>
<td>22</td>
</tr>
<tr>
<td>3.3 Cultural Setting</td>
<td>23</td>
</tr>
<tr>
<td>3.3.1 Prehistoric Setting</td>
<td>23</td>
</tr>
<tr>
<td>3.3.2 Ethnohistoric Setting (Post-AD 1750)</td>
<td>26</td>
</tr>
<tr>
<td>3.3.3 Historic Setting</td>
<td>29</td>
</tr>
<tr>
<td>3.4 Records Search Results</td>
<td>35</td>
</tr>
<tr>
<td>3.4.1 Previously Conducted Cultural Resources Studies</td>
<td>35</td>
</tr>
<tr>
<td>3.4.2 Previously Recorded Cultural Resources</td>
<td>36</td>
</tr>
<tr>
<td>3.5 Geologic Setting</td>
<td>38</td>
</tr>
<tr>
<td>3.5.1 Stadium Conglomerate</td>
<td>39</td>
</tr>
<tr>
<td>3.5.2 Mission Valley Formation</td>
<td>39</td>
</tr>
<tr>
<td>4 THRESHOLDS OF SIGNIFICANCE</td>
<td>41</td>
</tr>
<tr>
<td>5 IMPACT ANALYSIS</td>
<td>43</td>
</tr>
<tr>
<td>6 MITIGATION MEASURES</td>
<td>69</td>
</tr>
<tr>
<td>7 CUMULATIVE ANALYSIS</td>
<td>73</td>
</tr>
<tr>
<td>8 LEVEL OF SIGNIFICANCE AFTER MITIGATION</td>
<td>75</td>
</tr>
<tr>
<td>9 REFERENCES</td>
<td>77</td>
</tr>
<tr>
<td>10 LIST OF PREPARERS</td>
<td>85</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (CONTINUED)

APPENDICES

A	SCIC Records Search Results (CONFIDENTIAL)
B	NAHC Sacred Lands File Search Results (CONFIDENTIAL)
C	California Department of Parks and Recreation Series 523 Forms

FIGURES

1	Regional Map
2	Vicinity Map
3	Project Area Map
4	Project Site Design
5	Aerial Overview of the Normal School Campus ca. 1924 (SDSU 2007a)
6	Overview of the New Campus Buildings in 1931 (SDSU 2007b)
7	Student Walking through Row of T-Shacks near the Present-Day Life Sciences Building ca. 1950 (SDSU 2007c)
8	Facilities Services Building (view to SW)
9	Temporary Engineering Buildings ca. 1959, with the Current Facilities Services Building Indicated (view to NW) (SDSU 2007d)
10	South Elevation of Industrial Technology Building in 2015 (view to NW)
11	South Elevation of Industrial Arts Building in 1960 (view to NW) (SDSU 2007e)
12	North Elevation of Industrial Technology Building in 2015 (view to SE)
13	North Elevation of Industrial Arts Building ca. 1953 (view to SE) (SDSU 2007f)
14	Southwest Elevation of Photographic Laboratory Addition Completed in 1956 (view to east)
15	Northwest Elevation of the Materials Testing Laboratory Addition Completed in 1956 (view to east)
16	South Elevation of Engineering Laboratory Building in 2015 (view to NW)
17	South Elevation of Industrial Arts Addition ca. 1950s (view to NW) (SDSU 2007g)
18	North Elevation of Engineering Laboratory Building in 2015 (view to SW)
19	North Elevation of Industrial Arts Addition ca. 1950s (view to SW) (SDSU 2007h)
20	East Elevation of Engineering Laboratory Building in 2015 with Cobblestone Wall Indicated (view to west)
21	Plans for the New Engineering Laboratory Building as Printed in the Aztec (1954)
22	South Elevation of Engineering Building in 2015 (view to NW)
TABLE OF CONTENTS (CONTINUED)

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>South Elevation of Engineering Industrial Arts Building ca. 1962 (view to NW) (SDSU 2007i)</td>
</tr>
<tr>
<td></td>
<td>..62</td>
</tr>
<tr>
<td>24</td>
<td>CAM Center (view to west)</td>
</tr>
<tr>
<td></td>
<td>..65</td>
</tr>
<tr>
<td>25</td>
<td>SDSC Historic District Overview</td>
</tr>
<tr>
<td></td>
<td>..67</td>
</tr>
</tbody>
</table>

TABLES

1. Existing Engineering Laboratory and Industrial Technology, Facilities Services, and CAM Center Buildings and New Engineering and Interdisciplinary Sciences Building Space Comparison (gross and assignable square feet) ..12
2. Previously Conducted Cultural Resources Studies within the Project Area35
3. Previously Recorded Cultural Resources within 1 Mile of the Project Area37
1 INTRODUCTION

Dudek was retained by Gatzke Dillon & Balance LLP and San Diego State University (SDSU) to conduct a cultural resources inventory and evaluation study for the SDSU Engineering and Interdisciplinary Sciences Building Project (proposed project). In preparation of this cultural resources technical report, Dudek conducted a records search of the proposed project area and a 1-mile radius at the South Coastal Information Center, in addition to a Sacred Lands File search with the California Native American Heritage Commission (NAHC), and an intensive-level pedestrian survey of the proposed project area. During the pedestrian survey, five historic-age buildings were recorded and evaluated to determine their historical significance since these buildings would be either demolished or altered as part of the proposed project. These buildings, and their original construction date as noted, include the Facilities Services Building (1947), the Industrial Technology Building (1953), the Engineering Laboratory Building (1956), the Engineering Building (1962), and the CAM Center Building (1962).

1.1 Regional and Local Setting

The campus is situated along Interstate 8 about 8 miles from downtown San Diego (see Figure 1, Regional Map, and Figure 2, Vicinity Map). The proposed project would be located in the northeastern portion of the main San Diego State University (SDSU) campus (see Figure 3, Project Area Map). The campus is part of the College Area community of the City of San Diego (City).

The new building would be located to the south of the existing Engineering Building and would take the place of the existing Engineering Laboratory and Industrial Technology buildings on the main SDSU campus. The site is defined by Aztec Circle Drive to the north and east, the Physics building to the south, and Life Sciences buildings to the west. The land on which the proposed project would be developed is owned by SDSU and is located within the existing campus boundary.

1.2 Project Description and Location

1.2.1 Overview

San Diego State University (SDSU) proposes to construct a new, five-story building (four levels above grade and one subterranean level) for the College of Engineering and Interdisciplinary Sciences. The new building would be referred to as the “Engineering and Interdisciplinary Sciences Building.” The need for the building stems from outdated facilities and growth in enrollment in the engineering disciplines. SDSU is also interested in growing its research program, particularly through interdisciplinary projects that bring the sciences
Cultural Resources Technical Report for the
SDSU Engineering and Interdisciplinary Sciences Building

and engineering together. The new building will provide SDSU with state-of-the-art research facilities to attract significant research projects and funding.

The new building would be located to the south of the existing Engineering Building, and would take the place of the existing Engineering Laboratory and Industrial Technology buildings on the main campus of SDSU (see Figure 1, Regional Map; Figure 2, Vicinity Map; and Figure 3, Project Area Map). Development of the new building would include the following components, which, collectively, are referred to as the “proposed project”:

- Demolition of the existing Engineering Laboratory and Industrial Technology buildings (during construction, the occupants of the existing Engineering Laboratory and Industrial Technology buildings would be temporarily relocated to various buildings on campus).
- Construction of the new Engineering and Interdisciplinary Sciences Building and new landscaped quadrangle for the science, technology, engineering, and mathematics (STEM) disciplines.
- Occupancy and operation of the new building.
- Modification of the existing Engineering Building, which is located to the north of the proposed new building site, to connect the existing Engineering Building to the new building on one or more floors (see Figure 3).
- Demolition of the Facilities Services Building (“Quonset Hut”; see Figure 3).
- Demolition of the CAM Center Building (“CAM Labs”; see Figure 3).

The target completion date for occupancy and operational use of the new building is January (spring semester) 2018.

1.2.2 Proposed Project Details

The proposed project would consist of demolition of several existing buildings, construction of a new building, and modification of an existing building (see Figure 3, Project Area Map, and Figure 4, Project Site Design). The increase in number and size of spaces in the new engineering complex would result in teaching labs that can accommodate a capacity increase of 200 full-time equivalent (FTE) students. While the increased capacity may be filled by the transfer of students from other disciplines where growth has and would remain flat or slightly decrease, for purposes of environmental analysis, it is assumed that the 200 FTE would represent an increase in enrollment of 224 students. Additionally, the new engineering complex would accommodate up to 80 additional research staff members over current levels.
SDSU Engineering and Interdisciplinary Sciences Building Project

Figure 1
Regional Map
INTENTIONALLY LEFT BLANK
Figure 2: Vicinity Map

SDSU Engineering and Interdisciplinary Sciences Building Project

Project Location
SDSU Campus Boundary

0 500 1,000 Feet

AERIAL SOURCE: BING MAPPING SERVICE
Legend
- Project Location
- Demolished before construction (2015)
- Renovations (2018)
- Demolished after project completion (2019)

Figure 3
Project Area Map

SDSU Engineering and Interdisciplinary
Sciences Building Project
The details of each project component are provided below.

New Engineering and Interdisciplinary Sciences Building. The new Engineering and Interdisciplinary Sciences Building would be located to the south of the existing Engineering Building, at the site of the existing Engineering Laboratory and Industrial Technology buildings. This location was selected for several reasons. First, the location provides excellent visibility from areas of the campus. Second, the location provides connectivity to the historic core of the campus (the campus core is listed on the national register of historic places). Third, the location is immediately adjacent to the other STEM disciplines, which include physics, astronomy, physical and life sciences, geography, mathematics, computer science, biosciences, chemistry, and engineering.

The adjacency to the other STEM disciplines is purposeful. The proposed project would include a new quadrangle, the function of which would be to provide a sense of place, identity, and interaction for the STEM disciplines, and to link the new building to the SDSU original campus core. Together, the new building and new quadrangle would be planned to encourage interdisciplinary research, teaching, and interaction among the STEM disciplines. It would also provide flexible research and teaching space for the rapidly changing and increasingly competitive disciplines of engineering and the sciences. The construction of the new quadrangle is integral to the construction of the building itself and will happen simultaneously.

The new Engineering and Interdisciplinary Sciences Building would be approximately 95,000 gross square feet (GSF) in size, four levels above grade and one subterranean level (60 feet total height above grade), and externally reflect the architectural heritage of the campus. The new building would be designed in the mission style of architecture that is present within the core of campus. The new building would be affixed with exterior security lighting typical of other instructional buildings in the campus core.

The Engineering and Interdisciplinary Sciences Building would represent an increase of approximately 38,000 GSF over the existing Engineering Laboratory and Industrial Technology, CAM Center, and Facilities Services buildings. The new building would consist of 60,000 assignable square feet (ASF), which is 20,000 more ASF than the existing Engineering Laboratory and Industrial Technology, CAM Center, and Facilities Services buildings. The building would consist, internally, of increased numbers and sizes of teaching labs and research facilities (including office and meeting spaces; bench spaces; and preparation, service, and technology spaces); a phage center; an imaging center with MRI capability; and an entrepreneurial center with laboratories and offices. The new Engineering and Interdisciplinary Sciences Building would not contain any space for equipment maintenance, administrative offices, or lecture halls.
The new Engineering and Interdisciplinary Sciences Building would be designed to meet Leadership in Energy and Environmental Design (LEED) Silver certification or equivalent.

Table 1 illustrates the differences in additional GSF and ASF between the existing Engineering Laboratory and Industrial Technology buildings, Facilities Services Building, and CAM Center and the new Engineering and Interdisciplinary Sciences Building.

Table 1
Existing Engineering Laboratory and Industrial Technology, Facilities Services, and CAM Center Buildings and New Engineering and Interdisciplinary Sciences Building Space Comparison (gross and assignable square feet)

<table>
<thead>
<tr>
<th>Space</th>
<th>Existing Buildings</th>
<th>New Engineering and Interdisciplinary Sciences Building</th>
<th>Net Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Assignable</td>
<td>39,737</td>
<td>60,000</td>
<td>20,263</td>
</tr>
<tr>
<td>Total Gross</td>
<td>56,832</td>
<td>95,000</td>
<td>38,168</td>
</tr>
</tbody>
</table>

Existing Engineering Building Modifications. The proposed project would include modifications to the existing Engineering Building, located to the north of the site of the proposed new Engineering and Interdisciplinary Sciences Building, to connect the existing building to the new building on one or more floors. Additionally, modest interior renovations, primarily paint and some replacement of finishes to selected areas, would be made to the existing Engineering Building.

Demolition of Existing Engineering Laboratory and Industrial Technology Buildings. The existing Engineering Laboratory and Industrial Technology buildings were constructed in 1956 and 1953, respectively, and consist of a total of 47,000 GSF of space. The 47,000 GSF in the existing Engineering Laboratory and Industrial Technology buildings consists of 29,268 ASF for teaching labs; research facilities, including office collaboration and meeting rooms, bench space, and preparation, service, and technology; equipment maintenance; administrative offices; lecture halls; and an entrepreneurial center with laboratories and offices. The existing Engineering Laboratory and Industrial Technology buildings do not contain a phage center or imaging center.

Demolition of Existing CAM Center Building. Once the new Engineering and Interdisciplinary Sciences Building is constructed, the CAM Center Building will be demolished. The existing CAM Center Building was constructed in 1962 and consists of 1,732 GSF of building space. This building has housed a variety of engineering student project labs and organization workspace since its construction.
Demolition of Existing Facilities Services Building. Once the new Engineering and Interdisciplinary Sciences Building is constructed, the existing Facilities Services Building located immediately north of the existing Engineering Laboratory and Industrial Technology buildings would be demolished. This building was constructed in 1947, consists of 8,100 GSF, and has always housed materials for grounds and facilities maintenance for this portion of campus.
2 METHODOLOGY

2.1 Records Search

On January 6, 2015, Dudek conducted a search of the California Historical Resources Information System at the South Coastal Information Center, located on the SDSU campus. The search included any previously recorded cultural resources and investigations within a 1-mile radius of the project area. The California Historical Resources Information System search also included a review of the National Register of Historic Places (NRHP), the California Register of Historical Resources (CRHR), the California Points of Historical Interest list, the California Historical Landmarks list, the Archaeological Determinations of Eligibility list, and the California State Historic Resources Inventory list. The results of the records search, including a bibliography of prior cultural resources studies, is provided in Appendix A.

2.2 Native American Coordination

Dudek initiated Native American coordination for this project on January 6, 2015. As part of the process of identifying cultural resources within or near the project area, Dudek contacted the Native American Heritage Commission (NAHC) to request a review of their Sacred Lands File. The NAHC faxed a response on January 20, 2015 (see Appendix B), and stated that the Sacred Lands File search “failed to indicate the presence of Native American cultural resources in the immediate project area.” However, the letter goes on to state that the absence of site-specific information does not inform on the presence or absence of cultural resources in any project area. The NAHC also provided a contact list of Native American individuals and/or tribal organizations who may have knowledge of cultural resources in or near the project area.

2.3 Cultural Resources Survey

Dudek architectural historian Samantha Murray, MA, conducted an intensive-level survey of the proposed project area on January 13, 2015. The purpose of the survey was to identify, record, and evaluate all historic built environment resources located within the proposed project area. During the survey, Ms. Murray examined and photographed all built environment resources (i.e., buildings, structures, and objects) located within the proposed project area. The proposed project area is entirely developed and contains no exposed sediment, so an intensive archaeological survey was not warranted.

Dudek documented the fieldwork using field notes, digital photography, close-scale field maps, and aerial photographs. Photographs of the project area were taken with a Canon Power Shot SD90 digital camera with 12 megapixels and 3× optical zoom. All field notes, photographs, and records related to the current study are on file at Dudek.
2.4 Building Research

As part of the process of evaluating each building for historic significance, it was necessary to conduct background research on each building in order to understand its historic context and any changes that have occurred overtime. Background research involved a review of the existing *San Diego Modernism Historic Context Statement* (City of San Diego 2007), which was developed to be a useful tool in understanding the history and development of modern era (1935–1970) buildings and structures in the City, and ultimately aid in evaluating their relative historic significance and value. Dudek also made extensive use of the SDSU Library’s online digital collections, which provide an important collection of historic campus newspapers, annuals, photographs, and other documents that tell the story of the development and growth of SDSU from its early beginnings to the present day. Finally, SDSU granted Dudek access to its building records via its internal Facilities Information System, which maintains historic plan sets and data for each building on campus. This proved to be a valuable resource for assessing alterations/changes that have been made to the buildings over time, and confirmed the original dates of construction.
3 EXISTING CONDITIONS

This section includes a description of the existing cultural resources setting as well as the regulatory environment that is relevant to the evaluation of cultural resources.

3.1 Regulatory Setting

This section includes a discussion of the applicable state and local laws, ordinances, regulations, and standards governing cultural resources, which must be adhered to before and during construction of the proposed project.

3.1.1 State

This section includes a discussion of the applicable state and local laws, ordinances, regulations, and standards governing cultural resources, which must be adhered to before and during construction of the proposed project.

As summarized below, the treatment of cultural resources is governed by state and local laws and regulations. There are specific criteria for determining whether prehistoric and historic sites or objects are significant and/or protected by law. For instance, state significance criteria generally focus on the resource’s integrity and uniqueness, its relationship to similar resources, and its potential to contribute important information to scholarly research. As a whole, the laws and regulations seek to mitigate impacts on significant prehistoric or historic resources.

California Register of Historical Resources

In California, the term “historical resource” includes but is not limited to “any object, building, structure, site, area, place, record, or manuscript which is historically or archaeologically significant, or is significant in the architectural, engineering, scientific, economic, agricultural, educational, social, political, military, or cultural annals of California” (California Public Resources Code, Section 5020.1(j)). In 1992, the California legislature established the CRHR “to be used by state and local agencies, private groups, and citizens to identify the state’s historical resources and to indicate what properties are to be protected, to the extent prudent and feasible, from substantial adverse change” (California Public Resources Code, Section 5024.1(a)). A resource is eligible for listing in the CRHR if the State Historical Resources Commission determines that it is a significant resource and that it meets any of the following criteria:

1. Is associated with events that have made a significant contribution to the broad patterns of California’s history and cultural heritage.
2. Is associated with the lives of persons important in our past.
3. Embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of an important creative individual, or possesses high artistic values.

4. Has yielded, or may be likely to yield, information important in prehistory or history.

The CRHR protects cultural resources by requiring evaluations of the significance of prehistoric and historic resources. The criteria for the CRHR are nearly identical to those for the NRHP and properties listed or formally designated as eligible for listing on the NRHHP are automatically listed in the CRHR, as are the state landmarks and points of interest. The CRHR also includes properties designated under local ordinances or identified through local historical resource surveys (California Public Resources Code, Section 5020 et seq.).

Native American Historic Cultural Sites

State law addresses the disposition of Native American burials in archaeological sites and protects such remains from disturbance, vandalism, or inadvertent destruction; establishes procedures to be implemented if Native American skeletal remains are discovered during construction of a project; and establishes the Heritage Commission to resolve disputes regarding the disposition of such remains. In addition, the Native American Historic Resource Protection Act (California Public Resources Code, Section 5097 et seq.) makes it a misdemeanor punishable by up to 1 year in jail to deface or destroy an Indian historic or cultural site that is listed or may be eligible for listing in the CRHR.

California Native American Graves Protection and Repatriation Act

The California Native American Graves Protection and Repatriation Act (California Repatriation Act), enacted in 2001, requires all state agencies and museums that receive state funding and that have possession or control over collections of human remains or cultural items, as defined, to complete an inventory and summary of these remains and items on or before January 1, 2003, with certain exceptions. The California Repatriation Act also provides a process for the identification and repatriation of these items to the appropriate tribes.

California Environmental Quality Act

As described further below, the following California Environmental Quality Act (CEQA) statutes (California Public Resources Code, Section 21000 et seq.) and CEQA Guidelines (14 CCR 15000 et seq.) are of relevance to the analysis of archaeological and historic resources:

- California Public Resources Code, Section 21083.2(g): Defines “unique archaeological resource.”
California Public Resources Code, Section 21084.1 and 14 CCR 15064.5(a): Define historical resources. In addition, 14 CCR 15064.5(b) defines the phrase “substantial adverse change in the significance of an historical resource;” it also defines the circumstances when a project would materially impair the significance of an historical resource.

California Public Resources Code, Section 5097.98 and 14 CCR 15064.5(e): Set forth standards and steps to be employed following the accidental discovery of human remains in any location other than a dedicated ceremony.

California Public Resources Code, Sections 21083.2(b) and 21083.2(c) and 14 CCR 15126.4: Provide information regarding the mitigation framework for archaeological and historic resources, including examples of preservation-in-place mitigation measures; preservation-in-place is the preferred manner of mitigating impacts to significant archaeological sites because it maintains the relationship between artifacts and the archaeological context, and may also help avoid conflict with religious or cultural values of groups associated with the archaeological site(s).

More specifically, under CEQA, a project may have a significant effect on the environment if it may cause “a substantial adverse change in the significance of an historical resource” (California Public Resources Code, Section 21084.1; 14 CCR 15064.5(b)). If a site is either listed or eligible for listing in the CRHR, or if it is included in a local register of historic resources, or identified as significant in a historical resources survey (meeting the requirements of California Public Resources Code, Section 5024.1(q)), it is a “historical resource” and is presumed to be historically or culturally significant for purposes of CEQA (California Public Resources Code, Section 21084.1; 14 CCR 15064.5(a)). The lead agency is not precluded from determining that a resource is a historical resource even if it does not fall within this presumption (California Public Resources Code, Section 21084.1; 14 CCR 15064.5(a)).

A “substantial adverse change in the significance of an historical resource” reflecting a significant effect under CEQA means “physical demolition, destruction, relocation, or alteration of the resource or its immediate surroundings such that the significance of an historical resource would be materially impaired” (14 CCR 15064.5(b)(1); California Public Resources Code, Section 5020.1(q)). In turn, the significance of an historical resource is materially impaired when a project:

1. Demolishes or materially alters in an adverse manner those physical characteristics of an historical resource that convey its historical significance and that justify its inclusion in, or eligibility for, inclusion in the California Register of Historical Resources; or
2. Demolishes or materially alters in an adverse manner those physical characteristics that account for its inclusion in a local register of historical resources pursuant to section 5020.1(k) of the Public Resources Code or its identification in an historical resources survey meeting the requirements of section 5024.1(g) of the Public Resources Code, unless the public agency reviewing the effects of the project establishes by a preponderance of evidence that the resource is not historically or culturally significant; or

3. Demolishes or materially alters in an adverse manner those physical characteristics of a historical resource that convey its historical significance and that justify its eligibility for inclusion in the California Register of Historical Resources as determined by a lead agency for purposes of CEQA (14 CCR 15064.5(b)(2)).

Pursuant to these sections, the CEQA inquiry begins with evaluating whether a project site contains any “historical resources,” then evaluates whether that project will cause a substantial adverse change in the significance of a historical resource such that the resource's historical significance is materially impaired.

Under CEQA, an environmental document is required to evaluate any impacts on unique archaeological resources (California Public Resources Code, Section 21083.2). A “unique archaeological resource” is defined as:

[A]n archaeological artifact, object, or site about which it can be clearly demonstrated that, without merely adding to the current body of knowledge, there is a high probability that it meets any of the following criteria:

1. Contains information needed to answer important scientific research questions and that there is a demonstrable public interest in that information.

2. Has a special and particular quality such as being the oldest of its type or the best available example of its type.

3. Is directly associated with a scientifically recognized important prehistoric or historic event or person (California Public Resources Code, Section 21083.2(g)).

An impact to a non-unique archaeological resource is not considered a significant environmental impact and such non-unique resources need not be further addressed in the environmental document (California Public Resources Code, Section 21083.2(a); 14 CCR 15064.5(c)(4)).
CEQA Guidelines Section 15064.5 assigns special importance to human remains and specifies procedures to be used when Native American remains are discovered. As described below, these procedures are detailed in California Public Resources Code, Section 5097.98.

California Health and Safety Code Section 7050.5

California law protects Native American burials, skeletal remains, and associated grave goods, regardless of their antiquity, and provides for the sensitive treatment and disposition of those remains. Health and Safety Code Section 7050.5 requires that if human remains are discovered in any place other than a dedicated cemetery, no further disturbance or excavation of the site or nearby area reasonably suspected to contain human remains shall occur until the County coroner has examined the remains (Section 7050.5b). If the coroner determines or has reason to believe the remains are those of a Native American, the coroner must contact the Heritage Commission within 24 hours (Section 7050.5c). The Heritage Commission will notify the Most Likely Descendant. With the permission of the landowner, the Most Likely Descendant may inspect the site of discovery. The inspection must be completed within 24 hours of notification of the Most Likely Descendant by the Heritage Commission. The Most Likely Descendant may recommend means of treating or disposing of, with appropriate dignity, the human remains and items associated with Native Americans.

3.1.2 Local

City of San Diego

Although SDSU, as a state agency (California State University) is not subject to local planning and zoning laws and, therefore, is not required to follow City’s historical resources evaluation protocol, SDSU has chosen to use this guidance due to its applicability to the San Diego build environment. The Historical Resources Guidelines of the City’s Land Development Manual identifies the criteria under which a resource may be historically designated. It states that any improvement, building, structure, sign, interior element and fixture, site, place, district, area, or object may be designated a historical resource by the City Historical Resources Board if it meets one or more of the following designation criteria:

- a. Exemplifies or reflects special elements of the City’s, a community’s or a neighborhood’s historical, archaeological, cultural, social, economic, political, aesthetic, engineering, landscaping or architectural development;
- b. Is identified with persons or events significant in local, state or national history;
c. Embodies distinctive characteristics of a style, type, period or method of construction or is a valuable example of the use of indigenous materials or craftsmanship;

d. Is representative of the notable work of a master builder, designer, architect, engineer, landscape architect, interior designer, artist or craftsman;

e. Is listed or has been determined eligible by National Park Service for listing on the National Register of Historic Places or is listed or has been determined eligible by the State Historical Preservation Office for listing on the State Register of Historical Resources; or

f. Is a finite group of resources related to one another in a clearly distinguishable way or is a geographically definable area or neighborhood containing improvements which have a special character, historical interest or aesthetic value or which represent one or more architectural periods or styles in the history and development of the City.

The designation and preservation of the City’s historic resources is a primary goal of the Historic Preservation Element of the City’s Draft General Plan. In 2007, the City prepared the San Diego Modernism Historic Context Statement for consideration of its modern resources (c. 1935–1970). The report details the background of social and economic history, development patterns, and artistic and cultural trends that define the modern era in San Diego. This context statement was utilized in the evaluation of the five modern-age resources evaluated as part of the current study, and in consideration of each building’s historic significance at the local level.

3.2 Existing Environmental Setting

The project area is an entirely developed portion of the SDSU campus. Prior to development of the land, the project area and the surrounding landscape consisted of coastal sage scrub vegetation. The entire project area is situated on middle to late Eocene Poway Group, specifically, Mission Valley Formation. Soils within the project area consist of the Olivenhain series/urban land. Olivenhain is a member of the clayey-skeletal, kaolinitic, thermic family of Ultic Palexeralfs. Olivenhain soils are gently sloping to strongly sloping and are on dissected marine terraces at elevations of 100 to 600 feet (NRCS 2008). The project area sits at an elevation of 405–435 feet above mean sea level. The nearest naturally occurring freshwater source is a tributary of the San Diego River that runs approximately 660 feet (200 meters) north of the project area in the vicinity of Adobe Falls.
3.3 Cultural Setting

3.3.1 Prehistoric Setting

Evidence for continuous human occupation in the San Diego region spans the last 10,000 years. Various attempts to parse out variability in archaeological assemblages over this broad time frame have led to the development of several cultural chronologies. Some of these are based on geologic time, most are based on temporal trends in archaeological assemblages, and others are interpretive reconstructions. Each of these reconstructions describes essentially similar trends in assemblage composition in more or less detail. This research employs a common set of generalized terms used to describe chronological trends in assemblage composition: Paleoindian (pre-5500 BC), Archaic (8000 BC–AD 500), Late Prehistoric (AD 500–1750), and Ethnohistoric (post-AD 1750).

Paleoindian (pre-5500 BC)

Evidence for Paleoindian occupation in coastal Southern California is tenuous, especially considering the fact that the oldest dated archaeological assemblages look nothing like the Paleoindian artifacts from the Great Basin. One of the earliest dated archaeological assemblages in coastal Southern California (excluding the Channel Islands) derives from SDI-4669/W-12, in La Jolla. A human burial from SDI-4669 was radiocarbon dated to 9,590–9,920 years before present (95.4% probability) (Hector 2007). The burial is part of a larger site complex that contained more than 29 human burials associated with an assemblage that fits the Archaic profile (i.e., large amounts of groundstone, battered cobbles, and expedient flake tools). In contrast, typical Paleoindian assemblages include large-stemmed projectile points, high proportions of formal lithic tools, bifacial lithic reduction strategies, and relatively small proportions of groundstone tools. These sites contained fluted and unfluted stemmed points and large numbers of formal flake tools (e.g., shaped scrapers, blades). Other typical Paleoindian sites include the Komodo site (MNO-679), a multicomponent fluted-point site, and MNO-680, a single-component Great Basin stemmed-point site (Basgall and Delacorte 2003). At MNO-679 and MNO-680, groundstone tools were rare, whereas finely made projectile points were common.

Turning back to coastal Southern California, the fact that some of the earliest dated assemblages are dominated by processing tools runs counter to traditional notions of mobile hunter-gatherers traversing the landscape for highly valued prey. Evidence for the latter—that is, typical Paleoindian assemblages—may have been located along the coastal margin at one time, prior to glacial desiccation and a rapid rise in sea level during the early Holocene (pre-7500 BP) that submerged as much as 1.1 miles (1.8 kilometers) of the San Diego coastline. If this were true, however, it would also be expected that such sites would be located on older landforms near the
current coastline. Some sites, such as SDI-210 along Agua Hedionda Lagoon, contained stemmed points similar in form to Silver Lake and Lake Mojave projectile points (pre-8000 BP) that are commonly found at sites in California’s high desert (Basgall and Hall 1990). SDI-210 yielded one corrected radiocarbon date of 8520–9520 BP (Warren et al. 2004). However, sites of this nature are extremely rare and cannot be separated from large numbers of milling tools that intermingle with old projectile point forms.

Warren et al. (2004) claimed that a biface manufacturing tradition present at the Harris site complex (SDI-149) is representative of typical Paleoindian occupation in the San Diego region that possibly dates between 10,365 and 8200 BC (Warren et al. 2004, p. 26). Termed San Dieguito (Rogers 1945), assemblages at the Harris site are qualitatively distinct from most others in the San Diego region because the site has large numbers of finely made bifaces (including projectile points), formal flake tools, a biface reduction trajectory, and relatively small amounts of processing tools (Warren 1964, 1968). Despite the unique assemblage composition, the definition of San Dieguito as a separate cultural tradition is hotly debated. Gallegos (1987) suggested that the San Dieguito pattern is simply an inland manifestation of a broader economic pattern. Gallegos’ interpretation of San Dieguito has been widely accepted in recent years, in part because of the difficulty in distinguishing San Dieguito components from other assemblage constituents. In other words, it is easier to ignore San Dieguito as a distinct socioeconomic pattern than it is to draw it out of mixed assemblages.

The large number of finished bifaces (i.e., projectile points and non-projectile blades), along with large numbers of formal flake tools at the Harris site complex, is very different than nearly all other assemblages throughout the San Diego region, regardless of age. Warren et al. (2004) made this point, tabulating basic assemblage constituents for key early-Holocene sites. Producing finely made bifaces and formal flake tools implies that relatively large amounts of time were spent for tool manufacture. Such a strategy contrasts with the expedient flake-based tools and cobble-core reduction strategy that typifies non-San Dieguito Archaic sites. It can be inferred from the uniquely high degree of San Dieguito assemblage formality that the Harris site complex represents a distinct economic strategy from non-San Dieguito assemblages.

If San Dieguito truly represents a distinct socioeconomic strategy from the non-San Dieguito Archaic processing regime, its rarity implies that it was not only short-lived, but that it was not as economically successful as the Archaic strategy. Such a conclusion would fit with other trends in Southern California deserts, wherein hunting-related tools are replaced by processing tools during the early Holocene (Basgall and Hall 1993).
Archaic (8000 BC–AD 500)

The more than 1500-year overlap between the presumed age of Paleoindian occupations and the Archaic period highlights the difficulty in defining a cultural chronology in the San Diego region. If San Dieguito is the only recognized Paleoindian component in the San Diego region, then the dominance of hunting tools implies that it derives from Great Basin adaptive strategies and is not necessarily a local adaptation. Warren et al. (2004) admitted as much, citing strong desert connections with San Dieguito. Thus, the Archaic pattern is the earliest local socioeconomic adaptation in the San Diego region (Hale 2001, 2009).

The Archaic pattern is relatively easy to define with assemblages that consist primarily of processing tools: millingstones, handstones, battered cobbles, heavy crude scrapers, incipient flake-based tools, and cobble-core reduction. These assemblages occur in all environments across the San Diego region, with little variability in tool composition. Low assemblage variability over time and space among Archaic sites has been equated with cultural conservatism (Byrd and Reddy 2002; Warren 1968; Warren et al. 2004). Despite enormous amounts of archaeological work at Archaic sites, little change in assemblage composition occurs until the bow and arrow is adopted at around AD 500, as well as ceramics at approximately the same time (Griset 1996; Hale 2009). Even then, assemblage formality remains low. After the bow is adopted, small arrow points appear in large quantities and already low amounts of formal flake tools are replaced by increasing amounts of expedient flake tools. Similarly, shaped millingstones and handstones decrease in proportion relative to expedient, unshaped groundstone tools (Hale 2009). Thus, the terminus of the Archaic period is equally hard to define as its beginning because basic assemblage constituents and patterns of manufacturing investment remain stable, complemented only by the addition of the bow and ceramics.

Late Prehistoric (AD 500–1750)

The period following the Archaic and prior to Ethnohistoric times (AD 1750) is commonly referred to as the Late Prehistoric (Rogers 1945; Wallace 1955; Warren et al. 2004). However, several other subdivisions continue to be used to describe various shifts in assemblage composition, including the addition of ceramics and cremation practices. In northern San Diego County, the post-AD 1450 period is called the San Luis Rey Complex (True 1980), while the same period in southern San Diego County is called the Cuyamaca Complex and is thought to extend from AD 500 until Ethnohistoric times (Meighan 1959). Rogers (1929) also subdivided the last 1,000 years into the Yuman II and III cultures, based on the distribution of ceramics. Despite these regional complexes, each is defined by the addition of arrow points and ceramics, and the widespread use of bedrock mortars. Vagaries in the appearance of the bow and arrow and ceramics make the temporal resolution of the San Luis Rey and Cuyamaca Complexes difficult.
For this reason, the term Late Prehistoric is well suited to describe the last 1,500 years of prehistory in the San Diego region.

Temporal trends in socioeconomic adaptations during the Late Prehistoric period are poorly understood. This is partly due to the fact that the fundamental Late Prehistoric assemblage is very similar to the Archaic pattern, but includes arrow points and large quantities of fine debitage from producing arrow points and ceramics and from cremations. The appearance of mortars and pestles is difficult to place in time because most mortars are on bedrock surfaces; bowl mortars are actually rare in the San Diego region. Some argue that the Ethnohistoric intensive acorn economy extends as far back as AD 500 (Bean and Shipek 1978). However, there is no substantial evidence that reliance on acorns, and the accompanying use of mortars and pestles, occurred prior to AD 1400. True (1980) argued that acorn processing and ceramic use in the northern San Diego region did not occur until the San Luis Rey pattern emerged after approximately AD 1450. For southern San Diego County, the picture is less clear. The Cuyamaca Complex is the southern counterpart to the San Luis Rey pattern, however, and is most recognizable after AD 1450 (Hector 1984). Similar to True (1980), Hale (2009) argued that an acorn economy did not appear in the southern San Diego region until just prior to Ethnohistoric times, and that when it did occur, a major shift in social organization followed.

3.3.2 Ethnohistoric Setting (Post-AD 1750)

The history of the Native American communities prior to the mid-1700s has largely been reconstructed through later mission-period and early ethnographic accounts. The first records of the Native American inhabitants of the San Diego region come predominantly from European merchants, missionaries, military personnel, and explorers. These brief, and generally peripheral, accounts were prepared with the intent of furthering respective colonial and economic aims and were combined with observations of the landscape. They were not intended to be unbiased accounts regarding the cultural structures and community practices of the newly encountered cultural groups. The establishment of the missions in the San Diego region brought more extensive documentation of Native American communities, though these groups did not become the focus of formal and in-depth ethnographic study until the early twentieth century (Boscana 1846; Fages 1937; Geiger and Meighan 1976; Harrington 1934; Laylander 2000). The principal intent of these researchers was to record the precontact, culturally specific practices, ideologies, and languages that had survived the destabilizing effects of missionization and colonialism. This research, often understood as “salvage ethnography,” was driven by the understanding that traditional knowledge was being lost due to the impacts of modernization and cultural assimilation. Alfred Kroeber applied his “memory culture” approach (Lightfoot 2005, p. 32) by recording languages and oral histories within the San Diego region. Kroeber’s 1925 assessment
of the impacts of Spanish missionization on local Native American populations supported Kumeyaay traditional cultural continuity:

San Diego was the first mission founded in upper California; but the geographical limits of its influence were the narrowest of any, and its effects on the natives comparatively light. There seem to be two reasons for this: first, the stubbornly resisting temper of the natives; and second, a failure of the rigorous concentration policy enforced elsewhere (Kroeber 1925, p. 711).

In some ways, this interpretation led to the belief that many California Native American groups simply escaped the harmful effects of contact and colonization all together. This, of course, is untrue. Ethnographic research by Dubois, Kroeber, Harrington, Spier, and others during the early twentieth century seemed to indicate that traditional cultural practices and beliefs survived among local Native American communities. These accounts supported, and were supported by, previous governmental decisions that made San Diego County the location of more federally recognized tribes than anywhere else in the United States: 18 tribes on 18 reservations that cover more than 116,000 acres (CSP 2009).

The traditional cultural boundaries between the Luiseño and Kumeyaay Native American tribal groups have been well defined by anthropologist Florence C. Shipek:

In 1769, the Kumeyaay national territory started at the coast about 100 miles south of the Mexican border (below Santo Tomas), thence north to the coast at the drainage divide south of the San Luis Rey River including its tributaries. Using the U.S. Geological Survey topographic maps, the boundary with the Luiseño then follows that divide inland. The boundary continues on the divide separating Valley Center from Escondido and then up along Bear Ridge to the 2240 contour line and then north across the divide between Valley Center and Woods Valley up to the 1,880-foot peak, then curving around east along the divide above Woods Valley (Shipek 1993, as summarized in San Diego County Board of Supervisors 2007, p. 6).

Based on ethnographic information, it is believed that at least 88 different languages were spoken from Baja California Sur to the southern Oregon state border at the time of Spanish contact (Johnson and Lorenz 2006, p. 34). The distribution of recorded Native American languages has been dispersed as a geographic mosaic across California through six primary language families (Golla 2007, p. 71). Ipai and Tipai, spoken respectively by the northern and southern Kumeyaay communities, are mutually intelligible. For this reason, these two are often treated as dialects of a larger Kumeyaay tribal group rather than as distinctive languages, though this has been debated (Luomala 1978; Laylander 2010).
Golla has contended that one can interpret the amount of variability within specific language groups as being associated with the relative “time depth” of the speaking populations (Golla 2007, p. 80). A large amount of variation within the language of a group represents a greater time depth than a group’s language with less internal diversity. One method Golla has employed is drawing comparisons with historically documented changes in Germanic and Romantic language groups. Golla has observed that the “absolute chronology of the internal diversification within a language family” can be correlated with archaeological dates (2007, p. 71). This type of interpretation is modeled on concepts of genetic drift and gene flows that are associated with migration and population isolation in the biological sciences.

Golla suggested that there are two language families associated with Native American groups who traditionally lived throughout the San Diego County region. The northern San Diego tribes have traditionally spoken Takic languages that may be assigned to the larger Uto–Aztecan family (Golla 2007, p. 74). These groups include the Luiseño, Cupeño, and Cahuilla. Golla has interpreted the amount of internal diversity within these language-speaking communities to reflect a time depth of approximately 2,000 years. Other researchers have contended that Takic may have diverged from Uto–Aztecan ca. 2600 BC–AD 1, which was later followed by the diversification within the Takic-speaking San Diego tribes, occurring approximately 1500 BC–AD 1000 (Laylander 2010). The majority of Native American tribal groups in the southern San Diego region have traditionally spoken Yuman languages, a subgroup of the Hokan phylum. Golla has suggested that the time depth of Hokan is approximately 8,000 years (Golla 2007, p. 74). The Kumeyaay tribal communities share a common language group with the Cocopa, Quechan, Maricopa, Mojave, and others to the east, and the Kiliwa to the south. The time depth for both the Ipai (north of the San Diego River, from Escondido to Lake Henshaw) and the Tipai (south of the San Diego River, the Laguna Mountains through Ensenada) is estimated at 2,000 years at the most. Laylander has contended that previous research indicates a divergence between Ipai and Tipai to have occurred approximately AD 600–1200 (Laylander 1985). Despite the distinct linguistic differences between the Takic-speaking tribes to the north, the Ipai-speaking communities in central San Diego, and the Tipai-speaking southern Kumeyaay, attempts to illustrate the distinctions between these groups based solely on cultural material alone have had only limited success (Pigniolo 2004; True 1966).

The Kumeyaay generally lived in smaller family subgroups that would inhabit two or more locations over the course of the year. Although less common, there is sufficient evidence that there were also permanently occupied villages, and that some members may have remained at these locations throughout the year (Owen 1965; Shipek 1982, 1985; Spier 1923). Each small autonomous tribe was internally socially stratified, commonly including higher-status individuals such as a tribal head (Kwaaypay), shaman (Kuseyaay), and general members with various responsibilities and skills (Shipek 1982). Higher-status individuals tended to have greater rights
to land resources, and owned more goods, such as shell money and beads, decorative items, and clothing. To some degree, titles were passed along family lines; however, tangible goods were generally ceremonially burned or destroyed following the deaths of their owners (Luomala 1978). Remains were cremated over a pyre and then relocated to a cremation ceramic vessel that was placed in a removed or hidden location. A broken metate was commonly placed at the location of the cremated remains, with the intent of providing aid and further use after death. At maturity, tribal members often left, going to other bands to find a partner. The families formed networks of communication and exchange around such partnerships.

Areas or regions, identified by known physical landmarks, could be recognized as band-specific territories that might be violently defended against use by other members of the Kumeyaay. Other areas or resources, such as water sources and other locations that were rich in natural resources, were generally understood as communal land to be shared among all the Kumeyaay (Luomala 1978).

3.3.3 Historic Setting

Historic Period (Post-AD 1542)

European activity in the region began as early as AD 1542, when Juan Rodríguez Cabrillo landed in San Diego Bay. Sebastián Vizcaíno returned in 1602, and it is possible that there were subsequent contacts that went unrecorded. These brief encounters made the local native people aware of the existence of other cultures that were technologically more complex than their own. Epidemic diseases may also have been introduced into the region at an early date, either by direct contact with the infrequent European visitors or through waves of diffusion emanating from native peoples farther to the east or south (Preston 2002). It is possible, but as yet unproven, that the precipitous demographic decline of native peoples had already begun prior to the arrival of Gaspar de Portolá and Junípero Serra in 1769.

Spanish colonial settlement was initiated in 1769, when multiple expeditions arrived in San Diego by land and sea, and then continued northward through the coastal plain toward Monterey. A military presidio and a mission were soon firmly established at San Diego, despite violent resistance to them from a coalition of native communities in 1776. Private ranchos subsequently established by Spanish and Mexican soldiers, as well as other non-natives, appropriated many of the remaining coastal or near-coastal locations (Pourade 1960–1967).

Mexico’s separation from the Spanish empire in 1821 and the secularization of the California missions in the 1830s caused further disruptions to native populations in western San Diego County. Some former mission neophytes were absorbed into the workforces on the ranchos, while others drifted toward the urban centers at San Diego and Los Angeles or moved to the eastern portions of the county where they were able to join still largely autonomous native communities. The U.S. conquest and annexation of California in 1848, together with the gold
rush in Northern California, brought many additional outsiders into the region. Development during the following decades underwent numerous cycles of boom and bust. With rising populations in the nineteenth century throughout the Southern California region, there was increased demand for important commodities. By the 1930s and 1940s, beef production in San Diego County was one of the most important agricultural industries, experiencing resurgence. However, the impacts of the Great Depression and flood of new inhabitants during and following World War II succeeded in pushing out large ranching and agricultural operations.

San Diego State University

SDSU was founded on March 13, 1897, as the San Diego Normal School, a training facility for elementary school teachers. On November 1, 1898, 91 students registered for the first day of class above the One Cent Novelty Store downtown. The curriculum consisted of just three courses: English, math, and history. One month after the Normal School opened, a cornerstone for the school’s new location was laid on a 17-acre site located at the corners of Park and El Cajon Boulevards (Figure 5). At the time, many people complained that the location was too remote and the size too large, and doubted that a city of less than 20,000 would ever support a school for 600 teachers. The first class of students consisted of 225 students, and on June 21, 1900, 26 of those students became the school’s first graduates (Roberts 1962). Additional courses were quickly developed under the leadership of Samuel T. Black, who served as the school’s first president from 1898 to 1910 (SDSU 2015).

![Aerial Overview of the Normal School Campus ca. 1924 (SDSU 2007a)](image-url)
By 1907, the student body had grown to over 400 and two new wings, along with a new training school, were added to accommodate the growing population. In 1910, Edward L. Hardy replaced Black as president of the school and served as president until 1935. Hardy called the 2-year Normal School course a “preparation for spinsterhood,” and under his tenure, major changes took place. In 1921, the 2-year Normal School became the 4-year San Diego State Teacher’s College, controlled by the California Board of Education. That same year, San Diego Junior College became a branch of the school (a union that ended in 1946).

Enrollment at the school dropped upon U.S. involvement in World War I, as both students and faculty joined the armed services, leaving behind a class of only 239 women and no men by 1918. After the war ended, enrollment picked back up and by 1922, there were approximately 600 students and 46 faculty members. The original campus newspaper was called The Paper Lantern and in 1922, the first Del Sudoeste yearbook was issued. The school’s famed Aztec mascot came about in a 1925 issue of Del Sudoeste, which featured an Aztec motif along with the following quote: “The motif chosen seemed to us to be the one which best symbolized the college, since the name Aztec, although not officially adopted, is fast becoming traditional” (Roberts 1962).

By 1925, the student body had reached 1,300 and additional expansion at the existing location on Park Boulevard was no longer possible. Legislators offered a deal to San Diegans that stipulated the state would finance and maintain a new school if the City would supply the site and purchase the old Normal School. The Mission Palisades, or “Bell-Lloyd,” site was gifted by Los Angeles oil tycoon Alphonzo E. Bell (Wade et al. 1997). Eventually, voters approved a 125-acre site at Alvarado Canyon in east San Diego. This area offered a 100-acre site on a high, level mesa, perfect for building, and included natural canyons for a stadium and an amphitheater and grounds suitable for developing athletic fields. Groundbreaking ceremonies for the new college site were held in October 1929 (Roberts 1962).

President Hardy had a vision of the campus arranged as cloisters of a Spanish monastery, and viewed the new college as a social and artistic achievement. His vision for the campus was ultimately brought to fruition by California Public Works Department Architect Howard Spencer Hazen, who shared Hardy’s vision of a “monastic university.” Hazen incorporated both Christian and Moorish architectural styles of the medieval period known as Mudejar. He also incorporated elements of Gothic style architecture. By February 1931, the original six Spanish-Moorish style buildings were complete (Figure 6), including the Academic Building, the Library and Campanile, the Little Theater, the Teacher Training School Building, the Science Building, and the Power House Building. Despite financial constraints brought on by the Great Depression, allocated donations and support from the Works Progress Administration (WPA) allowed for completion of six additional buildings that were integral to the campus’s core: the Student’s Club
in 1931, Scripps Cottage for Women in 1931, the Dual Gymnasium in 1934, Aztec Bowl in 1936, the Greek Bowl in 1941, and the Music Building in 1942. Taken together with the original campus landscape, including the 100 concrete-and-wood WPA-constructed benches, and Donald Hord’s 1941 statue of “the Aztec,” these elements comprise the San Diego State College Historic District (SDSC Historic District) (Wade et al. 1997).

Radical changes came to campus in 1935 when Hardy was replaced as president by Dr. Walter R. Hepner, ending Hardy’s 25-year legacy on campus. That same year, San Diego State Teacher’s College became San Diego State College (SDSC) by an act of state legislature that allowed for expansion of degree programs beyond teacher education. In the fall of 1937, enrollment increased by nearly 100%. By 1939, appropriations were made for construction of a Greek-type open-air theater and by 1941, the Greek Bowl was complete (Salnaker 1962).

When President Franklin D. Roosevelt announced that the U.S. was getting involved in World War II in 1941, Dr. Hepner declared that any student volunteering for military service, male or female, could drop out of school and get full credit for classes that semester. In the end, over 3,000 former students, graduates, and faculty members participated in World War II, and 135 lost their lives. In 1939, student enrollment was at its highest point in history at 2,400 students.
The number of students dropped to 800 in 1944 (Salnaker 1962). When the war was over in 1945, enrollment exploded once again.

In 1944, the Servicemen Readjustment Act, also known as the G.I. Bill of Rights (G.I. Bill), was signed into law by President Roosevelt. The act afforded servicemen and women the opportunity to receive an education without having to worry about the high costs of tuition and also provided a monthly stipend for living expenses. The act also covered the costs of schoolbooks and other necessary supplies. These government incentives resulted in approximately 1.7 million veterans enrolling in colleges by 1947, accounting for nearly 49% of college admissions under the G.I. Bill. Of the 16 million World War II veterans in the United States, 7.8 million participated in higher education programs as a result of the bill (City of San Diego 2007).

In September 1946, the Aztec newspaper published an article about some of the post-war changes happening on campus, which included a program for creating new temporary office and classroom space in order to support the large number of students who had registered for fall classes. The article goes on to describe that 21 of these 23 buildings are steel-fabricated, measuring 20 by 48 feet, and that the other two are Quonset huts measuring 40 by 100 feet. By the 1950s, the campus had a sea of temporary buildings, known as “T-shacks,” to provide much-needed classroom space (Figure 7).

Figure 7 Student Walking through Row of T-Shacks near the Present-Day Life Sciences Building ca. 1950 (SDSU 2007c)
Many changes occurred on campus in the 1950s. As the campus reached new record enrollment numbers in 1950, SDSC moved forward with the construction of new permanent facilities, including the Art Building, which was built for $350,000 and dedicated in May. In November of that same year, groundbreaking ceremonies were held for the new campus laboratory and science buildings. In fall of 1951, the U.S. Air Force Reserve Officers’ Training Corps program was underway at SDSC, which allowed students to pursue their regular classes in the field of their choice. In spring of 1952, Dr. Hepner officially stepped down from his role as president of SDSC, and Dr. Malcolm A. Love was inaugurated as the new president. In 1954, President Love asked the state for a $30 million expansion program that would include construction of a new Education Building, a Humanities–Social Science classroom building, a Home Economic Center, and other new facilities. Many of the projects proposed by Love would go on to be approved by the state.

By the mid-1950s, the campus was caught up in U.S. Cold War politics when Dr. Harry Steinmetz was fired under the Luckel Act for refusing to answer the State Personnel Board on whether he was a member of the communist party (Stalnaker 1962). Fearful that the Soviet Union was winning the Cold War after launching the Sputnik satellite in 1957, the United States increased its focus and spending on education. Perhaps no other university system in the world felt these political changes more than California’s in the 1950s. San Diego’s own major Cold War industries (such as Convair, General Atomics, and the Scripps Institution) also supported the growth of higher education by encouraging the development of “a world class science and engineering graduate school in the La Jolla area” (City of San Diego 2007, p. 47). This dream of development came to fruition in 1960 when the University of California, San Diego (UCSD) was established.

By the late 1950s, enrollment had reached over 12,000 students and the campus saw rapid expansion with completion of the Humanities–Social Science Building, the library addition, five dormitories, a Chemistry–Geology Building, an addition to the Administration Building, a new men’s gymnasium, an addition to Health Services, an addition to the Commons, a new Industrial Arts Building, and a new Engineering Laboratory and Industrial Technology Building.

By 1960, SDSC became part of the new California State College system, currently known as the California State University (CSU) System. In 1963, just months before his assassination, President John F. Kennedy gave the commencement speech at SDSC and received not only the college’s first honorary doctorate degree, but also the first to be issued by the CSU System. By the early 1970s, SDSC officially became SDSU after legislative approval (SDSU 2015).

Engineering

In 1953, it was announced that SDSC engineering students would have their own engineering-focused magazine that would feature stories on local engineering, industrial, and scientific
The goal of the magazine was to create a desire for students to participate in engineering activities. Most of the articles would be written by students in layman’s terms that could be easily digested by the public (Aztec 1953a).

In 1954, construction began on a new $350,000 engineering building (the present-day Engineering Laboratory Building) and $100,000 worth of associated equipment. The department desperately needed an expansion of its facilities to support the increase of engineering students. In 1954, approximately 200 new freshman, engineering students comprised nearly half of the entire engineering enrollment at SDSC, and an even greater number of students was anticipated in the near future. It was also announced that the college was seeking two new engineering instructors to meet the demand of incoming students. By 1961, the College of Engineering was officially established at SDSC. By 1962, engineering students numbered 750 undergraduates and 108 graduates. Over the course of 10 years, the faculty had grown from 4 to 24, and engineering had transitioned from a department to a school. With completion of the new four-story Engineering Building in 1962, a major goal of the engineering school was to receive accreditation by the Engineers’ Council for Professional Development (ECPD) (Daily Aztec 1962), which it obtained in 1964. This accreditation increased the status of an engineering degree from SDSC, as graduation from an ECPD-accredited school is often a requirement for employment at engineering firms (Daily Aztec 1964).

3.4 Records Search Results

3.4.1 Previously Conducted Cultural Resources Studies

Sixty cultural resources studies have been previously conducted within a 1-mile radius of the proposed project area. A bibliography of all previously conducted studies within the 1-mile radius is provided in Appendix A of this report. Four cultural resources studies have been conducted within at least a portion of the proposed project area (see Table 2). Two of these studies (SD-0967 and SD-11185) are for the SDSU Master Plan, in which SD-11185 updates SD-09697; one of these studies (SD-13823) consists of the NRHP nomination form prepared for the adjacent historic district on campus; and the other study (SD-11265) is noted by the South Coastal Information Center as a “missing report” and no additional information was available on file.

Table 2

<table>
<thead>
<tr>
<th>SCIC Report No.</th>
<th>Title of Study</th>
<th>Author(s) and Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-09697</td>
<td>An Archaeological/Historical Study for the SDSU 2005 Campus Master Plan Revision</td>
<td>Pierson, Larry J. 2004</td>
</tr>
</tbody>
</table>
Table 2
Previously Conducted Cultural Resources Studies within the Project Area

<table>
<thead>
<tr>
<th>SCIC Report No.</th>
<th>Title of Study</th>
<th>Author(s) and Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-11185</td>
<td>A Cultural Resources Study for the SDSU 2007 Campus</td>
<td>Pierson, Larry J. 2007</td>
</tr>
<tr>
<td></td>
<td>Master Plan Revision</td>
<td></td>
</tr>
<tr>
<td>SD-11265</td>
<td>San Diego State University, 5300 Campanile Drive,</td>
<td>Various (no date)</td>
</tr>
<tr>
<td></td>
<td>San Diego, California 92182</td>
<td></td>
</tr>
<tr>
<td>SD-13823</td>
<td>National Register of Historic Places Registration</td>
<td>Wade, Sue A., Alexander D. Bevil, Lynne</td>
</tr>
<tr>
<td></td>
<td>Form: San Diego State College Historic District</td>
<td>E. Christenson, and Students 1997</td>
</tr>
</tbody>
</table>

SD-09697 and SD-11185

In 2007, Brian F. Smith and Associates prepared *A Cultural Resources Study for the SDSU 2007 Campus Master Plan Revision*, which served as an update to their 2005 report *An Archaeological/Historical Study for the SDSU 2005 Campus Master Plan Revision*. The 2007 update reflects changes that were made to the original project design. The 2007 study resulted in the identification of a bedrock milling site (CA-SDI-17221), which was found to be significant for its association with Adobe Falls, and two additional prehistoric isolates (CA-SDI-18326 and -18327), which were found to be not significant. Recommended mitigation included avoidance of site SDI-17221. No historic period buildings or structures were identified. Archaeological monitoring was recommended in portions of the project area because four of the six project components were located near areas that were identified as potentially sensitive for buried cultural deposits.

SD-13823

In 1997, Sue A. Wade et al. prepared the *National Register of Historic Places Registration Form for San Diego State College*. This document provides a detailed description and history of the contributing elements that comprise the NRHP-listed SDSC Historic District. The district was nominated under NRHP Criteria A, B, and C for being an exemplary grouping of Spanish Colonial Revival-style buildings designed by master architect Howard Spencer Hazen and landscape architect Mark Daniels, for its association with the lives of former SDSC presidents Edward L. Hardy and Walter R. Hepner, and for its association with early events that ultimately shaped the growth and development of the campus.

3.4.2 Previously Recorded Cultural Resources

No cultural resources have been previously recorded within the proposed project area. However, a total of 8 cultural resources and 15 historic addresses have been previously recorded within 1 mile of the proposed project area (see Table 3). Cultural resources within 1 mile of the proposed
project area consist of two prehistoric bedrock milling sites located north of Interstate 8, one prehistoric shell scatter with a single metate, one prehistoric isolate, two historic-age properties that were never evaluated, the NRHP-listed Aztec Bowl on campus, and one unknown resource for which the SCIC had no additional information on file. The 15 historic addresses identified by the SCIC represent buildings and structures previously recorded within a 1-mile radius of the project area. All are located well outside the proposed project area with the exception of the NRHP-listed SDSC Historic District, which is adjacent to the proposed project area.

Table 3
Previously Recorded Cultural Resources within 1 Mile of the Project Area

<table>
<thead>
<tr>
<th>Primary Number</th>
<th>Trinomial</th>
<th>Resource Description</th>
<th>Recorded By/Year</th>
<th>NRHP/CRHR Eligibility Status</th>
<th>Proximity to Project Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>37-00208</td>
<td>SDI-208</td>
<td>Unknown (no description provided)</td>
<td>Treganza (no date)</td>
<td>Unknown</td>
<td>0.8 mile to the east</td>
</tr>
<tr>
<td>37-009899</td>
<td>SDI-9899</td>
<td>Prehistoric: single metate and shell scatter</td>
<td>Kidder/Miller 1984</td>
<td>Unknown</td>
<td>0.3 mile to the west</td>
</tr>
<tr>
<td>37-013708</td>
<td>—</td>
<td>Historic: Aztec Bowl</td>
<td>Cashmere, C. 1994</td>
<td>1S (NRHP-listed)</td>
<td>0.25 mile to the southwest</td>
</tr>
<tr>
<td>37-015591</td>
<td>—</td>
<td>Prehistoric: isolate</td>
<td>Tift, L. 1996</td>
<td>Not eligible</td>
<td>740 feet (225 meters) to the northwest</td>
</tr>
<tr>
<td>37-025491</td>
<td>—</td>
<td>Historic: 5168-5172 ½ College Avenue</td>
<td>Pierson, L. 2003</td>
<td>7 (not evaluated)</td>
<td>0.25 mile to the south</td>
</tr>
<tr>
<td>37-025492</td>
<td>—</td>
<td>Historic: 5811 Lindo Paseo</td>
<td>Pierson, L. 2003</td>
<td>7 (not evaluated)</td>
<td>0.35 mile to the south</td>
</tr>
<tr>
<td>37-028223</td>
<td>SDI-28223</td>
<td>Prehistoric: bedrock milling site</td>
<td>Pierson, L. 2007</td>
<td>Recommended not eligible</td>
<td>0.2 mile to the north</td>
</tr>
<tr>
<td>37-028224</td>
<td>SDI-18327</td>
<td>Prehistoric: bedrock milling site</td>
<td>Pierson, L. 2007</td>
<td>Recommended not eligible</td>
<td>985 feet (300 meters) to the north</td>
</tr>
</tbody>
</table>

Previously Recorded Historic Addresses

—	—	Historic: Adobe Falls Road	—	Unknown	Outside
—	—	Historic: 5585 Lindo Paseo (1950 residence)	—	6Z (not eligible)	Outside
—	—	Historic: 5595 Lindo Paseo (1950 residence)	—	6Z (not eligible)	Outside
—	—	Historic: 5605 Lindo Paseo (1950 residence)	—	6Z (not eligible)	Outside
—	—	Historic: 5619 Lindo Paseo (1950 residence)	—	6Z (not eligible)	Outside
—	—	Historic: 5633 Lindo Paseo (1950 residence)	—	6Z (not eligible)	Outside
Table 3
Previously Recorded Cultural Resources within 1 Mile of the Project Area

<table>
<thead>
<tr>
<th>Primary Number</th>
<th>Trinomial</th>
<th>Resource Description</th>
<th>Recorded By/Year</th>
<th>NRHP/CRHR Eligibility Status</th>
<th>Proximity to Project Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>37-017254</td>
<td>—</td>
<td>Historic: 5840 Hardy Avenue (1947 residence)</td>
<td>—</td>
<td>Unknown</td>
<td>Outside</td>
</tr>
<tr>
<td>37-017254</td>
<td>—</td>
<td>Historic: 5841 Hardy Avenue (1947 residence)</td>
<td>—</td>
<td>Unknown</td>
<td>Outside</td>
</tr>
<tr>
<td>37-017254</td>
<td>—</td>
<td>Historic: 5843 Hardy Avenue (1947 residence)</td>
<td>—</td>
<td>Unknown</td>
<td>Outside</td>
</tr>
<tr>
<td>37-017254</td>
<td>—</td>
<td>Historic: 5845 Hardy Avenue (1947 residence)</td>
<td>—</td>
<td>Unknown</td>
<td>Outside</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>Historic: 5300 Campanile Drive (SDSC Historic District)</td>
<td>—</td>
<td>1D (NRHP-listed district)</td>
<td>Adjacent</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>Historic: 5822 Lindo Paseo (1937 residence)</td>
<td>—</td>
<td>7 (not evaluated)</td>
<td>Outside</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>Historic: 6229 Montezuma Road (1951 residence)</td>
<td>—</td>
<td>6Z (not eligible)</td>
<td>Outside</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>Historic: 6237 Montezuma Road (1950 residence)</td>
<td>—</td>
<td>6Z (not eligible)</td>
<td>Outside</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>Historic: 6245 Montezuma Road (1951 residence)</td>
<td>—</td>
<td>6Z (not eligible)</td>
<td>Outside</td>
</tr>
</tbody>
</table>

3.5 Geologic Setting

Paleontological resource impact potential, or sensitivity, is determined by an understanding of the geological history and depositional environments that underlie a project site, which influence the probability of prehistoric life being preserved as part of the fossil record. Generally speaking, the geologic formations in the City of San Diego (1996) have been assigned a paleontological resource sensitivity rating. A high rating indicates a high probability of encountering paleontological resources, a moderate rating indicates a moderate probability of encountering paleontological resources, and a low rating indicates a low probability of encountering paleontological resources.

As discussed below, the geological units underlying the site are associated with two geologic formations, the Stadium Conglomerate and the Mission Valley Formation, based on the published geological mapping by Kennedy (1975) and an unpublished geotechnical report by Southland Geotechnical Consultants (2015) for the proposed project site. In many areas of the SDSU campus, these formations are overlain by artificial fill that has no paleontological
resource sensitivity. The Stadium Conglomerate and Mission Valley Formation are described in more detail below.

3.5.1 Stadium Conglomerate

The Stadium Conglomerate is a poorly sorted, cobble conglomerate of Eocene age (Deméré and Walsh 1993). On the SDSU campus, this geological unit underlies the Mission Valley Formation.

The Stadium Conglomerate has produced variably abundant and important fossil remains, and there are known localities documented from this formation throughout the County of San Diego (*records search results pending*). The Stadium Conglomerate has a high paleontological resource sensitivity based on the City of San Diego (1996) guidelines for paleontology.

3.5.2 Mission Valley Formation

The Mission Valley Formation is a fine-grained marine sandstone of Eocene age (Deméré and Walsh 1993). On the SDSU campus, the Mission Valley Formation underlies the Lindavista Formation, or San Diego Formation where present, and overlies the Stadium Conglomerate (Kennedy 1975).

The Mission Valley Formation has abundant and generally well-preserved fossils, with known fossil localities in the SDSU campus area (*records search results pending*). The Mission Valley Formation has a high paleontological resource sensitivity based on the City of San Diego (1996) guidelines for paleontology.
4 THRESHOLDS OF SIGNIFICANCE

The following significance criteria included in Appendix G of the CEQA Guidelines (14 CCR 15000 et seq.) assist in determining the significance of a cultural resource impact. According to Appendix G of the CEQA Guidelines, a significant impact related to cultural resources would occur if the project would:

1. Cause a substantial adverse change in the significance of a historic resource pursuant to Section 15064.5.
2. Cause a substantial adverse change in the significance of an archaeological resource pursuant to Section 15064.5.
3. Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature.
4. Disturb any human remains, including those interred outside of formal cemeteries.

As previously described in Section 3.1 (Regulatory Setting), the treatment of cultural resources is governed by state and local laws and regulations, and there are specific criteria for determining whether or not a cultural resource is significant and/or protected by law. A resource is eligible for listing in the CRHR if the State Historical Resources Commission determines that it is a significant resource and that it meets any of the following criteria:

1. Is associated with events that have made a significant contribution to the broad patterns of California’s history and cultural heritage.
2. Is associated with the lives of persons important in our past.
3. Embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of an important creative individual, or possesses high artistic values.
4. Has yielded, or may be likely to yield, information important in prehistory or history.
Likewise, the Historical Resources Guidelines of the City’s Land Development Manual identify the criteria under which a resource may be historically designated. The guidelines state that any improvement, building, structure, sign, interior element and fixture, site, place, district, area, or object may be designated a historical resource by the City Historical Resources Board if it meets one or more of the following designation criteria:

a. Exemplifies or reflects special elements of the City’s, a community’s or a neighborhood’s historical, archaeological, cultural, social, economic, political, aesthetic, engineering, landscaping or architectural development;

b. Is identified with persons or events significant in local, state or national history;

c. Embodies distinctive characteristics of a style, type, period or method of construction or is a valuable example of the use of indigenous materials or craftsmanship;

d. Is representative of the notable work of a master builder, designer, architect, engineer, landscape architect, interior designer, artist or craftsman;

e. Is listed or has been determined eligible by National Park Service for listing on the National Register of Historic Places or is listed or has been determined eligible by the State Historical Preservation Office for listing on the State Register of Historical Resources; or

f. Is a finite group of resources related to one another in a clearly distinguishable way or is a geographically definable area or neighborhood containing improvements which have a special character, historical interest or aesthetic value or which represent one or more architectural periods or styles in the history and development of the City.

Although SDSU as a state agency is not required to follow City’s historical resources evaluation protocol, SDSU has chosen to use this guidance due to its applicability to the San Diego built environment.
5 IMPACT ANALYSIS

Would the project cause a substantial adverse change in the significance of a historic resource pursuant to Section 15064.5?

Five historic-age buildings were identified within the proposed project area as a result of the cultural resources survey (shown on Figure 3):

- The Facilities Services Building (built in 1947)
- The Industrial Technology Building (built in 1953)
- The Engineering Laboratory Building (built in 1956)
- The Engineering Building (built in 1962)
- The CAM Center Building (built in 1962)

Of the five buildings identified, four are currently proposed for demolition and one (the Engineering Building) is proposed to be kept, but altered. A detailed physical description, photographs, background information, and a formal evaluation of historic and architectural significance and integrity for each of the five buildings are provided in the section that follows. Appendix C provides the appropriate sets of State of California Department of Parks and Recreation Series 523 Forms for each property evaluated.

Facilities Services Building (Quonset Hut)

The Facilities Services Building is a pre-fabricated, three-span Multiple Utility style Quonset hut (Figure 8). The building sits on a concrete block foundation and is sheathed in corrugated metal siding. It features groupings of multi-pane windows with awning sash openings on both the north and south elevations. Additional multi-pane windows are located on the east and west sides of the buildings, although some have been replaced with double-hung windows. The building features industrial metal roll-up doors on both the west and east elevations. SDSU building records indicate that the building was constructed and occupied by June 1947 for use as a temporary building.

Noted alterations to the Facilities Services Building include the placement of a standard-size door in one of the original steel sliding/roll-up doors on the front (east) elevation; infilling of an original standard-size door on the front elevation; replacement of some of the original multi-pane windows throughout; addition of wheelchair-access ramps on both sides of the building; and installation of window air conditioning units throughout (dates of alterations unknown).
The Facilities Services Building is a type of Quonset hut known as a “Multiple Utility Building,” or “Multiple Building,” which was designed to expand in both directions. It is essentially an expandable version of the Utility Building style Quonset hut, but with the ability to accomplish larger spans by using a rectilinear steel frame that joined the arched roof segments via low, sloping valley gutters. The Multiple Building could be expanded endlessly using module increments measuring anywhere between 61 feet and 6 inches in width and 100 feet in length. The Quonset hut was never meant to be considered “architecture”; rather, it was seen as a convenient solution for the military and the war effort. By the end of World War II, approximately 120,000 of these pre-fabricated Stran-Steel huts had been erected all over the world (Decker and Chiel 2005).

In 1946, SDSC began a program to erect new temporary offices and classrooms in an attempt to handle the massive influx of newly registered students following the end of World War II and the signing of the G.I. Bill in 1944. Twenty-one of the new buildings were steel fabricated, measuring 20 by 48 feet, and two were Quonset huts, measuring 40 by 100 feet. One of the Quonset huts most heavily used by students was located west of the main quadrangle near the Hardy Tower as an auxiliary reserve library to house the overflow of books from the regular reserve. It also served as a study hall. Another Quonset hut, along with five steel buildings, was placed near the old Power House Building (the Physical Plant Boiler Shop) for use as
Cultural Resources Technical Report for the
SDSU Engineering and Interdisciplinary Sciences Building

mechanical and architectural drawing rooms (Aztec 1946). Even more temporary buildings, including additional Quonset huts, were added to the campus in the years that followed. By 1959, numerous temporary steel buildings comprised the engineering department, including at least two other Utility style Quonset huts and a series of Butler buildings, which have since been removed (see Figure 9). In July 2012, the Physical Plant Boiler Shop was renamed Facilities Services.

![Temporary Engineering Buildings](image)

Figure 9 Temporary Engineering Buildings ca. 1959, with the Current Facilities Services Building Indicated (view to NW) (SDSU 2007d)

Evaluation of the Facilities Services Building considered national, state, and local-level eligibility criteria. Archival research on the building failed to indicate any associations with important events. Although the building is associated with the post-World War II influx of students on college campuses in California that resulted from the G.I. Bill, and it represents a period in Southern California when colleges and universities were scrambling to create space for their drastically growing student bodies, it is not known to be associated with any specific events that have contributed to the history of the region or the university. Unlike Quonset huts found on other nearby college campuses that once had a military function (e.g., the Quonset huts associated with Camp Matthews at the University of California, San Diego), the Facilities Services Building appears to have always functioned as temporary classroom/campus storage,
and does not have any connection to San Diego’s military history. As shown on Figure 9, the building was once surrounded by numerous steel temporary buildings, including other Quonset huts and Butler buildings, none of which had a military function. For these reasons, the Facilities Services Building does not appear eligible for listing under NRHP Criterion A or CRHR Criterion 1.

Additionally, archival research failed to uncover any association with persons important to our past, and the property does not appear eligible for listing under NRHP Criterion B or CRHR Criterion 2.

The Stran-Steel style Quonset hut was an extremely common kit during the 1940s, with extant examples in both a military and non-military context found all over the world. The Quonset hut does not represent an architectural style, nor does it represent the notable work of a master architect. In addition, the Facilities Services Building has been slightly altered from its original appearance. For these reasons, the subject building does not appear eligible for listing under NRHP Criterion C or CRHR Criterion 3.

The subject building is unlikely to yield any information important to prehistory or history, and does not appear eligible for listing under NRHP Criterion D or CRHR Criterion 4.

In consideration of City local-level designation criteria, the subject building does not appear to exemplify or reflect special elements of the city’s cultural, social, economic, political, aesthetic, engineering, landscaping, or architectural development. It was constructed for use as a temporary building to support the post-war influx of students on campus. Therefore, the building does not appear eligible under City Criterion A. As detailed above in consideration of national and state criteria, the subject building is not known to be associated with any significant persons or events, and does not appear eligible under City Criterion B. As described above, the subject building does not embody the distinctive characteristics of a style and is not the work of a master architect or builder. Therefore, the building does not appear eligible under City Criteria C or D. The subject building has never been determined eligible for listing in the NRHP or CRHR and is therefore not eligible under City Criterion E. Finally, the subject building is not part of a historic district or group of resources and does not appear eligible under City Criterion F.

Industrial Technology Building

The Industrial Technology Building is a two-story building, roughly rectangular in plan, with a composition roof and concrete bulkhead, and is clad in cement plaster. Irregularly shaped end walls reflect the Modern style. The south elevation features a series of multi-pane windows with awning sash openings, covered by metal grilles (added at a later date). The easternmost portion
of the south elevation features an original overhead door with square glass panes, and an added metal roll-up door. The westernmost portion of the south elevation features two entrances composed of standard glass pull doors and fabric awnings (added). The north elevation features wall-to-ceiling multi-pane opaque glass (replaced at unknown date) and standard doors that were once industrial metal roll-up or overhead doors. The east elevation features an outside covered patio area that was originally enclosed. The west elevation features an addition to the original 1930 Teacher’s Training School Building (present-day Physics Building) in Spanish Colonial Revival style. This addition features a Spanish tile roof, an arcade walkway that connects the Industrial Technology Building to the Physics Building, and multi-pane windows with awning sash openings. This addition creates a transition between the Modern style Industrial Technology Building with the original Spanish Colonial Revival style that comprises the NRHP-listed historic district on campus. Where the two buildings meet, there is a courtyard with two of the original concrete–and-wood WPA benches from the 1940s. These are contributing elements of the NRHP-listed historic district.

Noted alterations are based on a comparison of original building plans and historical photographs of the building with the present-day condition of the building. Dates of these observed alterations are unknown. Alterations observed on the south elevation (see Figures 10 and 11) include the addition of a metal roll-up door, the installation of two sets of commercial glass pull doors that provide access to the present-day Montezuma Publishing and Custodial Services offices, the addition of fabric awnings above the commercial doors, removal of the original sawdust collector, removal of the original wood sunshade, the addition of metal grilles over the windows, the placement of industrial equipment in front of original windows, the replacement of and alteration of the original pedestrian pathway and ornamental landscaping that was once in front of the south elevation (currently a paved service road), and the addition of a small patio area with tables and benches.

Alterations observed on the north elevation (see Figures 12 and 13) include replacement of all original clear multi-pane windows with opaque multi-pane windows (original panes were square, current panes are rectangular), removal of an original overhead door and installation of a standard door in the sealed opening, reconfiguration and enclosing of the original loading dock, and replacement of original metal roll-up door on the loading dock. Additional alterations include replacement of the original wooden door on the east elevation and conversion of the original eastern elevation from an enclosed space with multi-pane windows and overhead door to a covered patio area.
Figure 10 South Elevation of Industrial Technology Building in 2015 (view to NW)

Figure 11 South Elevation of Industrial Arts Building in 1960 (view to NW) (SDSU 2007e)
Figure 12 North Elevation of Industrial Technology Building in 2015 (view to SE)

Figure 13 North Elevation of Industrial Arts Building ca. 1953 (view to SE) (SDSU 2007f)
In 1948, an article in the *Aztec* announced that a new science quadrangle was in the works that would include construction of both Physical Science and Industrial Arts buildings. The buildings were to be funded by the State Public Works Board (*Aztec* 1948). The Industrial Arts Building (currently known as the Industrial Technology Building) was completed in 1953 to facilitate the needs of the school’s new major in the industrial arts. As stated in the *Aztec* newspaper, “A new major in industrial arts has been developed along with the building. The major will stress the teaching of industrial arts, not the training of students for jobs.” The Fine Arts Building (built in 1950), the Industrial Arts Building, and a new campus elementary school building were the first post-war buildings built on the SDSC campus. The Industrial Arts Building cost approximately $500,000 and featured nine departments composed of specialized equipment, including a materials testing lab, an electric and radio shop with three test bays, an industrial arts drafting room, a special room for display purposes and student activities, a woodworking shop, a general shop especially adapted for training purposes, a graphic arts center, a general metal workshop including a foundry and welding equipment, and a transportation unit. The interior of the building included “use of color dynamics. For example, small rooms are painted tan and yellow to give an illusion of space. Since workers will be required to work on a cement floor, the walls are painted pink to give an illusion of warmth. On the other hand, the foundry is painted blue to tone down the heat” (*Aztec* 1953b:10).

In 1956, two additions were completed on the Industrial Arts Building. These additions appear on plans for the Engineering Building Addition (present-day Engineering Laboratory Building). The Photographic Laboratory addition on the southwest elevation exhibits more modern, tinted windows (Figure 14), while the Materials Testing Laboratory addition on the northwest elevation exhibits the large multi-pane windows (Figure 15) that once matched the original windows on the Industrial Art Building’s north elevation.
Figure 14 Southwest Elevation of Photographic Laboratory Addition Completed in 1956 (view to east)

Figure 15 Northwest Elevation of the Materials Testing Laboratory Addition Completed in 1956 (view to east)
Cultural Resources Technical Report for the SDSU Engineering and Interdisciplinary Sciences Building

Original drawings provided by SDSU indicate that the main Industrial Arts Building was designed by architects William Templeton Johnson and George Chandler Hatch, and the addition was designed by Johnson, Hatch, and Wulff a few years later. Johnson and Hatch had worked extensively together over the years. Hatch originally worked as a chief draftsman for Johnson (1945–1947) and then the two formed the architectural firms Johnson & Hatch (1948–1949) and Johnson, Hatch, and Wulff (1950–1953) (Bowker LLC 1955).

The building is a very late example of Johnson in particular, who died just a few years later in 1957. William Templeton Johnson (1877–1957) is considered a master architect, standing shoulder-to-shoulder with contemporaries such as Irving Gill, Richard Requa, and Samuel Hamill (all of whom Johnson worked with), and having designed some of the most important buildings in the City. “It is the art of Johnson that has most shaped the character of San Diego in the first half of the twentieth century principally through his public buildings” (Petersen 1971). Some of Johnson’s principal works include the San Diego Fine Arts Gallery in Balboa Park (1925), San Diego Trust Bank (1928), the Serra Museum in San Diego’s Presidio Park (1929), the Museum of Natural History in Balboa Park (1930–1933), the main U.S. Post Office in San Diego (1937), San Diego Civic Center (1938), and the main branch of the San Diego Public Library (1954).

Johnson’s first major public structure was the La Jolla Public Library and Athenaeum, which was a combination of Spanish Colonial Revival and Italian Renaissance styles. Between 1922 and 1925, he designed several private residences, La Jolla High School (including the auditorium), the now-demolished Roosevelt Middle School Music Building, and two private research laboratories. In 1924, he designed some of his most important works, including the Fine Arts Gallery in Balboa Park (present-day San Diego Museum of Art). In 1926, he designed the first unit of the Los Apartamentos de Sevilla, which would later become La Valencia Hotel. In 1927 and 1928, he designed the Southern Trust and Commerce Bank and the San Diego Trust & Savings Bank Building, which is listed on the NRHP. In 1929, he designed the Junipero Serra Museum in Presidio Park and the Samuel Fox Building at Sixth Avenue and Broadway in downtown San Diego. Between 1930 and 1933, Johnson was involved in several projects in Balboa Park, including the base of the El Cid Campeador statue and the design of the Museum of Natural History. Between 1935 and 1938 he designed several public buildings for national, state, and local governments, including the County Administration Building (done in collaboration with Gill, Requa, and Hamill). Between 1939 and his retirement in 1955, Johnson’s firm designed numerous private residences, at least 10 school buildings (including the SDSC Master Plan), and the main branch of the San Diego Public Library (Freeley et al. 2011). Johnson is probably best known for his study and application of Spanish Revival style architecture, although his work spanned many architectural styles and movements.
George C. Hatch (1911–2006) is also an important local architect for his contribution to the design of Modern style public buildings in the San Diego region, although not to the same level of significance as Johnson. “To design public building within budget constraints, George C. Hatch believed in working from the inside out, emphasizing the practical over the picturesque” (Williams 2006). Some of Hatch’s principal works included the SDSC Master Plan (1950), Bird Rock Elementary School in San Diego (1950), SDSC Training School (1953), the main branch of the San Diego Public Library (1954), the Eugene Field Elementary School in San Diego (1955), the San Diego City Administration Building (1964), the San Diego County Water Authority Building (1968), and San Diego City Operations Building (1970) (Bowker LLC 1970). He was also involved in designing the downtown City Hall and the Reuben H. Fleet Space Center in Balboa Park, and was involved in the remodel of Café del Rey Moro and the dining terrace in Balboa Park (Williams 2006). Being over 30 years younger than Johnson, the Industrial Arts Building represents an earlier example of his work.

The 1956 addition to the Industrial Arts Building was completed by the architectural firm Johnson, Hatch, and Wulff. Franz Victor Leonard Wulff (1911–1978) worked as a draftsman for Johnson from 1946 to 1949 before being promoted to chief draftsman (1949–1950), and was part of the Johnson, Hatch, and Wulff architectural firm from 1950 to 1953 before launching Wulff, Fifield & Associates. Some of his principal works include Bird Rock Elementary School (1951), Pacific Beach Junior High School (1953), the SDSC Training School (1953), the main branch of the San Diego Public Library (1954), Chula Vista Recreation Center (1955), the San Diego northeast branch of the YMCA (1955), San Diego County General Hospital (1963), James Madison High School (1963), San Diego City Administration Building (with George C. Hatch, 1963), and the Old Globe Theatre addition and remodel (1966–1969) (Bowker LLC 1970).

Evaluation of the Industrial Technology Building considered national, state, and local-level eligibility criteria. Archival research on the building failed to indicate any associations with important events or patterns of development. The Industrial Arts Building was constructed as part of the 1950s SDSC Master Plan, which included the construction of many other buildings designed by different architects. Although construction of the building falls against the backdrop of the Cold War and the nation’s/state’s pursuit of education/advancement, it is not associated with any specific national, state, or local events. Therefore, the Industrial Technology Building does not appear eligible for listing under NRHP Criterion A or CRHR Criterion 1.

Additionally, archival research failed to uncover any association with persons important to our past, and the property does not appear eligible for listing under NRHP Criterion B or CRHR Criterion 2.
The Industrial Technology Building represents the work of master architect William Templeton Johnson and George C. Hatch, who have undoubtedly had a profound influence on the design of public buildings in San Diego, respectively. However, as described above, the building has been altered from its original form. Some of the more major alterations include the replacement of all of the original glazing on the north elevation with opaque glass (which has greatly affected the overall look and feel of the building, which was designed to be completely transparent on the north elevation); reconfiguration and enclosing of the original loading dock on the north elevation; installation of two sets of commercial glass pull doors on the south elevation; removal of the original sawdust collector on the south elevation; and conversion of the original eastern elevation from an enclosed space with multi-pane windows and overhead door to a covered patio area.

In addition to having been subject to multiple exterior alterations, the Industrial Technology Building does not appear to be a principal work of either architect. Johnson and Hatch were known for designing some of the most important public buildings in the city (particularly Johnson), including many of the buildings located in Balboa Park. Johnson’s primary period of influence was from 1918 through the mid-1930s, when he designed some of his most important buildings, and although he was a master of many styles of architecture, he was best known for his period revival style architecture. The Industrial Arts Building represents one of his later works and was designed during a period when the firm was designing many school buildings. The Industrial Arts Building was designed to meet the needs of a budding industrial arts major at SDSC in the 1950s. Johnson and Hatch also designed other buildings on campus as part of the SDSC Master Plan in the 1950s, including the Engineering Laboratory Building (located directly to the north), and the no longer extant Campus Laboratory School Building, which was demolished in the 1990s to make way for the present-day Student Services Building. Other important local architects designed many of the SDSC buildings in the 1950s, including Samuel Hamill and Frank L. Hope.

The Industrial Arts Building has been subject to numerous alterations over the years. Additionally, it is a very late and relatively unremarkable example of Johnson’s work, and was designed during a period when his firm was designing many other school buildings. Therefore, the building does not appear eligible for listing under NRHP Criterion C or CRHR Criterion 3.

The subject building is unlikely to yield any information important to prehistory or history, and does not appear eligible for listing under NRHP Criterion D or CRHR Criterion 4.

In consideration of City local-level designation criteria, the subject building does not appear to exemplify or reflect special elements of the city’s cultural, social, economic, political, aesthetic, engineering, landscaping or architectural development. Therefore, the building does not appear eligible under City Criterion A. As detailed above in consideration of national and state criteria,
the subject building is not known to be associated with any significant persons or events, and
does not appear eligible under City Criterion B. As described above, the Industrial Arts
Building has been subject to numerous alterations over the years. Additionally, it is a late,
and not a particularly notable work of Johnson, and was designed during a period when his
firm was designing many other school buildings. Therefore, the building does not appear
eligible under City Criterion C or D. The subject building has never been determined eligible
for listing in the NRHP or CRHR and is therefore not eligible under City Criterion E.
Finally, the subject building is not part of a historic district of resources and does not appear
eligible under City Criterion F.

Engineering Laboratory Building

The Engineering Laboratory Building (originally known as the Industrial Arts and Engineering
Building Addition) is single story and rectangular in plan, with a composition roof and cement
plaster-clad exterior. The south elevation (see Figures 16 and 17) features a series of single-panel
glazed doors with upper transoms and multi-pane windows with awning sash openings (all
appear to be original). Some of the original panes have been punched out for installation of
window air-conditioning units. The roof on the south elevation has a shed roof extension
supported by metal posts, creating a covered walkway. The north elevation (Figures 18 and 19)
features a concrete bulkhead at the base with a wall of multi-pane windows with awning sash
openings, and two of the original overhead doors with decorative square glass panes. The
westernmost portion of the covered walkway on the south elevation, and a patio area outside the
north elevation, feature original concrete and wood WPA benches from the 1940s. These are
contributing elements of the NRHP-listed SDSC Historic District. The eastern-southeasternmost
corner of the building features a small segment of the original 1930s cobblestone-set-in-concrete-
mortar retaining walls (Figure 20), which represent the last remaining architectural elements of
the 1930 Training School Building playground (Wade et al. 1997). These walls were removed in
the 1950s for construction of the new Industrial Arts and Engineering Building addition and
parking lot. A large segment of the original cobblestone wall can be seen in Figure 13 just
outside the Industrial Arts Building during construction of the addition.

Noted alterations are based on a comparison of original building plans and historical photographs
of the building with the present-day condition of the building. Dates of these observed alterations
are unknown. Alterations to the north elevation include removal of one of the original overhead
doors (nearest to the east elevation). The entrance has been partially infilled, and a standard door
added in its place. Additionally, the original loading dock ramp has been entirely removed. Other
than these minor alterations, the building appears to maintain its overall integrity.
Figure 16 South Elevation of Engineering Laboratory Building in 2015 (view to NW)

Figure 17 South Elevation of Industrial Arts Addition ca. 1950s (view to NW) (SDSU 2007g)
Figure 18 North Elevation of Engineering Laboratory Building in 2015 (view to SW)

Figure 19 North Elevation of Industrial Arts Addition ca. 1950s (view to SW) (SDSU 2007h)
On March 19, 1954, the *Aztec* newspaper announced that the university planned to begin construction on a new engineering building to be designed by the architectural firm Johnson, Hatch, and Wulff (Figure 21):

The building will be much like the Industrial Arts Building, a modern type of architecture… The building will be one story high, with a mezzanine, constructed of reinforced concrete, with concrete floors. It will be rectangular in shape, 60 by 160 feet … to provide natural lighting, the entire north wall will be of glass, excepting a small wall at the base. Three labs will be on the main floor of the building: an electrical machinery and industrial electronics lab, a fluid mechanics lab and a steam power and internal combustion engine lab… There will also be three offices and three briefing rooms, in addition to other storage space and working areas. The largest of the rooms will be the electrical machinery lab with 3,800 square feet of room (Aztec 1954, p. 1).
The new Engineering Laboratory Building was officially dedicated on February 22, 1956, with President Malcolm A. Love formally accepting the new building during a ceremony held at the Open Air Theatre. Some of the more prestigious guests in attendance included California Governor Goodwin Knight, San Diego Mayor Charles Dail, and a variety of city councilmen, county supervisors, and state officials. As part of the dedication ceremony, San Diego industrial firms set up engineering exhibits which included mockups of ships and fighter planes by Convair, technology and training devices by the U.S. Navy, and jet models by Ryan Aircraft. The completed building consisted of 13,000 square feet of floor space and included four laboratories, three briefing rooms, four offices, and five shops/storage rooms (Aztec 1956). The Engineering Laboratory Building was designed by architects Johnson, Hatch, and Wulff. See the above discussion of all three architects in the significance evaluation for the Industrial Technology Building (Section 5.2.2).

Evaluation of the Engineering Laboratory Building considered national, state, and local-level eligibility criteria. Archival research on the building failed to indicate any associations with important events or patterns of development. The Engineering Laboratory Building was constructed as part of the 1950s SDSC Master Plan, which included the construction of many other buildings designed by different architects. While construction of the building falls against the backdrop of the Cold War and the nation’s/state’s pursuit of...
education/advancement, it is not associated with any specific national, state, or local events. Therefore, the Engineering Laboratory Building does not appear eligible for listing under NRHP Criterion A or CRHR Criterion 1.

Additionally, archival research failed to uncover any association with persons important to our past, and the Engineering Laboratory Building does not appear eligible for listing under NRHP Criterion B or CRHR Criterion 2.

The Engineering Laboratory Building was designed by the firm Johnson, Hatch, and Wulff. All three men, Johnson most significantly, have had a profound influence on the design of public buildings in San Diego, respectively (see discussion in Section 5.2.2). However, the Engineering Laboratory Building does not appear to be a principal work of any of the architects. Johnson was known for designing some of the most important public buildings in the City, including many of the buildings located in Balboa Park. Johnson’s primary period of influence was from 1918 through the mid-1930s, when he designed some of his most important buildings, and although he was a master of many styles of architecture, he was best known for his period revival style architecture. The Engineering Laboratory Building represents one of his later works and was designed during a period when the firm was designing many school buildings. Johnson died just 1 year after its completion. Johnson and Hatch also designed other buildings on campus as part of the SDSC Master Plan in the 1950s, including the Industrial Arts Building (located directly to the south) and the no longer extant Campus Laboratory School Building, which was demolished in the 1990s to make way for the present-day Student Services Building. Hatch and Wulff, on the other hand, would go on to design many public buildings within and around San Diego in the years that followed, making a name for themselves outside the sphere of their association with Johnson. Other important local architects designed many of the SDSC buildings in the 1950s, including Samuel Hamill and Frank L. Hope. Unlike the Industrial Arts Building, which has been subject to numerous alterations over the years, the Engineering Laboratory Building has only been subject to minor exterior alterations (the extent of interior alterations is unknown). However, the building does not appear to be a principal work of the three architects and is a particularly late and relatively unremarkable example of master architect Johnson. In addition, the Engineering Laboratory Building was designed during a period when the firm was designing many other school buildings. For all of these reasons, the building does not appear eligible for listing under NRHP Criterion C or CRHR Criterion 3.

The subject building is unlikely to yield any information important to prehistory or history, and does not appear eligible for listing under NRHP Criterion D or CRHR Criterion 4.

In consideration of City local-level designation criteria, the subject building does not appear to exemplify or reflect special elements of the City’s cultural, social, economic, political, aesthetic,
Cultural Resources Technical Report for the
SDSU Engineering and Interdisciplinary Sciences Building

engineering, landscaping, or architectural development. Therefore, the building does not appear eligible under City Criterion A. As detailed above in consideration of national and state criteria, the subject building is not known to be associated with any significant persons or events, and does not appear eligible under City Criterion B. Although the building largely maintains its integrity, it is a late and not a particularly notable work of Johnson, and was designed during a period when his firm was designing many other school buildings. Therefore, the building does not appear eligible under City Criterion C or D. The subject building has never been determined eligible for listing in the NRHP or CRHR and is therefore not eligible under City Criterion E. Finally, the subject building is not part of a historic district or group of resources and does not appear eligible under City Criterion F.

Engineering Building

The Engineering Building is four stories, T-shaped in plan, with a flat roof, concrete block walls, and a smooth stucco-clad exterior (Figures 22 and 23). The south elevation features three horizontal bands of windows composed of aluminum-sash horizontal sliders, situated beneath a sharply projecting overhang that spans the length of the windows. At the center of the south elevation, there is a break in the ribbon windows with a thick band of textured stucco running from the roofline to the top the front entrance, which is recessed into a cutout opening. The entrance on the south elevation features two original concrete and wood WPA benches from the 1940s, which are contributing elements of the NRHP-listed SDSC Historic District. The north side of the building also features bands of aluminum-sash sliding windows but without the projecting overhang seen on the south elevation. There is also a covered carport area along the first floor of the northeast wall, and three metal roll-up doors. The building is accessed via a main entrance on the northwest wall. The east and west end walls feature a broad expanse of smooth stucco surface with decorative vertical bands of beige, textured stucco running from the roofline to the awning above the side entrances. Overall, the exterior of the building appears to be largely unaltered from its original form. The west elevation contains an outside patio area created in 2003, known as L3 Memorial Park, which commemorates three engineering professors who were shot and killed by a graduate student in 1996 (Daily Aztec 2002). The memorial includes three circular emblems on concrete tables that memorialize the engineers and their work.
Cultural Resources Technical Report for the
SDSU Engineering and Interdisciplinary Sciences Building

Figure 22 South Elevation of Engineering Building in 2015 (view to NW)

Figure 23 South Elevation of Engineering Industrial Arts Building ca. 1962 (view to NW)
 (SDSU 2007i)
The new $3.6 million Engineering and Applied Science Addition (also formerly known as the Engineering Industrial Arts Building) was dedicated on February 22, 1962, after being under construction for nearly two years. The building was designed by State of California architects Roland M. Foreman and A. Dennis (first name unknown) under the direction of State Architect Anson Boyd. The *Daily Aztec* described the new building as a four-story, 89,000-square-foot building with three laboratories: a wind tunnel, a vibrations laboratory, and a cryogenics laboratory. The new building consolidated a number of facilities that were once scattered throughout the campus in six different buildings (Daily Aztec 1962).

Evaluation of the Engineering Building considered national, state, and local-level eligibility criteria. Archival research on the building failed to indicate any associations with important events or patterns of development. Although the Engineering Building does represent an important development in the advancement of engineering education on campus, the big Cold War-era push to develop science, technology, and engineering facilities in the San Diego area is most significantly tied to the establishment of UCSD in 1960 (City of San Diego 2007). Therefore, the Engineering Building does not appear eligible for listing under NRHP Criterion A or CRHR Criterion 1.

Additionally, archival research failed to uncover any association with persons important to our past, and the Engineering Building does not appear eligible for listing under NRHP Criterion B or CRHR Criterion 2.

The Engineering Building is a Modern style building exhibiting International style design elements, including its rectangular plan, horizontal bands of windows, strong right angles, and use of simple building materials such as concrete, smooth stucco, brick, and glass. It is a late example of these stylistic elements, which have a period of significance in the San Diego region between 1935 and 1955 (City of San Diego 2007). At the time of its construction in 1962, project architect Roland M. Foreman from Sacramento had designed several other education buildings, including the science building on the campus of San Fernando Valley State College and the administration building at California State Polytechnic College (Bowker LLC 1962). No information was found regarding the other project architect, A. Dennis. Neither Foreman nor Dennis appear to be considered master architects. Although the Engineering Building appears to maintain the integrity of its original design, it does not appear to be a particularly notable example of the International style, of which extant examples can be found throughout college campuses in Southern California, often designed by master architects. For these reasons, the Engineering Building does not appear eligible for listing under NRHP Criterion C or CRHR Criterion 3.
The subject building is unlikely to yield any information important to prehistory or history, and does not appear eligible for listing under NRHP Criterion D or CRHR Criterion 4.

In consideration of City local-level designation criteria, the subject building does not appear to exemplify or reflect special elements of the City’s cultural, social, economic, political, aesthetic, engineering, landscaping, or architectural development. The City’s historic context statement on modernism describes the establishment of UCSD in 1960 as fulfilling the region’s need for “a world class science and engineering graduate school in the La Jolla area,” and does not make mention of the developments at SDSC during this time. Therefore, the building does not appear eligible under City Criterion A. As detailed above in consideration of national and state criteria, the subject building is not known to be associated with any significant persons or events, and does not appear eligible under City Criterion B. The Engineering Building exhibits elements of the International style; however, it is not a “true” example of the style and it falls outside the period of significance for the style in San Diego. It is also not the product of a master architect in the region. Therefore, the building does not appear eligible under City Criterion C or D. The subject building has never been determined eligible for listing in the NRHP or CRHR and is therefore not eligible under City Criterion E. Finally, the subject building is not part of a historic district or group of resources and does not appear eligible under City Criterion F.

CAM Center

The Computer Applied Mechanics (CAM) Center is a small single-story building, rectangular in plan, with a flat roof and painted concrete block walls (Figure 24). Fenestration consists of steel casement windows throughout, two metal entry doors located on the west elevation, and a metal roll-up door adjacent to a parking space on the east elevation. The building is very plain and contains no ornamentation. Portions of the north and east elevations are landscaped with a variety of succulent plants. The building was designed by the same state architects who designed the Engineering Building (Foreman and Dennis). Alterations include an addition to the south elevation in the late 1960s (to include the section with the roll-up door and driveway).

The CAM Center Building was constructed at the same time as the large four-story Engineering Building to the south, and was designed by the same State of California project architects, Foreman and Dennis. It was originally known as the Engine Test Cell and Switch Gear Building. No additional background information regarding the building was discovered.

Evaluation of the CAM Center Building considered national, state, and local-level eligibility criteria. Archival research on the building failed to indicate any associations with important events or patterns of development. Therefore, the CAM Center Building does not appear eligible for listing under NRHP Criterion A or CRHR Criterion 1.
Additionally, archival research failed to uncover any association with persons important to our past, and the CAM Center Building does not appear eligible for listing under NRHP Criterion B or CRHR Criterion 2.

The CAM Center Building is a simple, ubiquitous utility building that is not indicative of any particular style. This type of building was not designed to be noticed. Rather, it was designed to blend in with its surroundings, as evidenced by a total lack of ornamentation. It is not the notable work of a master architect, and it was altered in the late 1960s to incorporate an addition to the south elevation. For these reasons, the CAM Center Building does not appear eligible for listing under NRHP Criterion C or CRHR Criterion 3.

The subject building is unlikely to yield any information important to prehistory or history, and does not appear eligible for listing under NRHP Criterion D or CRHR Criterion 4.

In consideration of City local-level designation criteria, the subject building does not appear to exemplify or reflect special elements of the City’s cultural, social, economic, political, aesthetic, engineering, landscaping, or architectural development. Therefore, the building does not appear eligible under City Criterion A. As detailed above in consideration of national and state criteria, the subject building is not known to be associated with any significant persons or events, and does not appear eligible under City Criterion B. As described above, the CAM Center Building
is a ubiquitous utility building and does not represent the notable work of a master architect. Therefore, the building does not appear eligible under City Criterion C or D. The subject building has never been determined eligible for listing in the NRHP or CRHR and is therefore not eligible under City Criterion E. Finally, the subject building is not part of a historic district or group of resources and does not appear to be eligible under City Criterion F.

SDSC Historic District

The proposed project would be constructed directly adjacent to the existing SDSC Historic District on campus. In 1997, 14 elements consisting of 10 buildings, 1 site, 1 structure, and 2 objects were determined eligible as contributors to the historic district and became officially listed in the NRHP under Criteria A, B, and C. A brief description of the district’s historical significance is provided below (Christenson et al. 2005).

San Diego State University’s Historic District is an important and unique representation of evolving twentieth-century educational philosophies, architecture, and the significant accomplishments of the Works Progress Administration (WPA) in Southern California. The district’s plan, layout, and design are directly associated with the goals of the early leaders of this institution who sought to move its educational philosophy from that of a curriculum based on rote memorization and drill to a more holistic approach of educating and developing the complete person’s mind and body. Under the direction of these visionary presidents, San Diego Teachers College developed into a comprehensive modern university with the Historic District as its core, and this district remains the symbolic center of San Diego State University today.

Figure 25 provides an overview of the NRHP-listed SDSC Historic District buildings (highlighted in orange) and demonstrates their proximity to the buildings proposed for demolition as part of the current project (highlighted in green). Due to close proximity, the project has the potential to indirectly impact an NRHP-listed historical resource; therefore, mitigation is provided (see mitigation measure CUL-1 in Section 6, Mitigation Measures).
Summary

All five buildings proposed to be demolished or physical altered were recorded and evaluated for national, state, and local significance, and were found not eligible for inclusion in the NRHP, CRHR, or as a City-designated historic resource. Therefore, none of the buildings within the proposed project area are considered a historical resource under CEQA. However, the buildings are located adjacent to the NRHP-listed SDSC Historic District. Potential indirect impacts to the historic district would be considered significant; therefore, mitigation is provided (see mitigation measure CUL-1 in Section 6).

Would the project cause a substantial adverse change in the significance of an archaeological resource pursuant to Section 15064.5?

No archaeological resources were identified within the proposed project area as a result of the California Historical Resources Information System records search or the Native American Heritage Commission (NAHC) Sacred Lands File search. An intensive-level survey was not conducted because of the heavily developed nature of the proposed project area. Although there are no surface indicators of archaeological resources, and the proposed project area has been developed for many years, it is possible that intact archaeological deposits may be encountered during ground-disturbing activities associated with construction of the proposed
project. For these reasons, the proposed project area should be treated as potentially sensitive for archaeological resources. These impacts would be considered significant; therefore, mitigation is provided (see mitigation measure CUL-2 in Section 6).

Would the project directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?

Published geological mapping (Kennedy 1975) and unpublished geotechnical investigations such as the geotechnical report prepared for the proposed project (Southland Geotechnical Consultants 2015), indicate that the site is underlain by the Stadium Conglomerate and the Mission Valley Formation, which have produced Eocene age vertebrate fossils in the region. Therefore, these geological units should be considered to have a high potential to contain significant paleontological resources (City of San Diego, 1996; County of San Diego, 2007). Following the recommendations of the San Diego Natural History Museum, mitigation in the form of a paleontological mitigation program is provided to reduce any potential impacts to significant paleontological resources (see mitigation measure CUL-3 in Section 6).

Would the project disturb any human remains, including those interred outside of formal cemeteries?

There is no indication that human remains are present within the boundaries of the proposed project site. However, previously unidentified human remains may be uncovered during ground-disturbing activities such as foundation excavation. These impacts would be considered significant; therefore, mitigation is provided (see mitigation measure CUL-4 in Section 6).
6 MITIGATION MEASURES

CUL-1 Protection of the Adjacent San Diego State College Historic District. San Diego State University (SDSU) shall develop and incorporate specific measures to protect the adjacent portions of the historic district from being adversely impacted by construction activities into all demolition and construction plans. These measures shall comply with the Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings (the Secretary of the Interior’s Standards). Such measures include stabilization of historic windows to protect them from the effects of vibration, protection of historic building materials, protection of walkways and landscaped areas within the district from construction equipment by ensuring that they are not used as staging areas or as access routes, and preservation of the National Register of Historic Places (NRHP) district contributing Works Progress Administration benches (some of which are currently situated near buildings proposed for demolition).

Of particular importance is the existing Physical Sciences Building (an NRHP-listed district contributor), which connects directly to the Engineering Laboratory Building and Industrial Technology Building (proposed for demolition). Care should be taken to ensure that the adjacent elements of the original district buildings, including the exposed wooden posts, Spanish roof tiles, and other connecting materials, are not damaged or altered during demolition and construction of the adjacent buildings. Additionally, the existing Power Plant Building (an NRHP-listed district contributor) is very close to the Facilities Services Building (proposed for demolition). Demolition and construction plans shall detail how these elements will be protected and shall comply with the Secretary of the Interior’s Standards. It is further recommended that contractors be given a brief worker awareness training to ensure that all individuals working on the project are aware of the historic district and understand which areas should be avoided during construction.

Finally, all design plans for new construction shall be compatible with the architectural character of the district in order to protect its historic integrity and setting, and shall be consistent with the Secretary of the Interior’s Standards and Guidelines.

CUL-2 Unanticipated Discovery of Archaeological Resources. Subsequent to demolition and removal of existing structures and pavement from the project site, CSU/SDSU, or
Cultural Resources Technical Report for the
SDSU Engineering and Interdisciplinary Sciences Building

its designee, shall retain a qualified archaeologist (i.e., one listed on the Register of Professional Archaeologists) to complete an archaeological survey of ground surfaces within the project area. In the event the survey identifies potentially intact concentrations of prehistoric archaeological materials, focused data recovery archeological excavations shall be undertaken prior to the commencement of construction in the area of concern. A qualified Native American representative shall be retained to observe all focused data recovery excavations, if any. The focused excavations shall characterize: horizontal and vertical dimensions; chronological placement; site function; artifact/ecofact density and variability; presence/absence of subsurface features; research potential extent; and the integrity of the resources.

If the archaeological site is determined to be a historical resource within the meaning of CEQA Guidelines Section 15064.5(a), the archaeologist shall comply with CEQA Guidelines Section 15126.4(b)(3)(A), which notes that preservation in place, where feasible, is the preferred mitigation approach, or, alternatively, CEQA Guidelines Section 15126.4(b)(3)(C), which requires preparation and adoption of a data recovery plan, as well as the submittal of all plans and studies to the California Historical Resources Regional Information Center. Alternatively, if the archaeological site qualifies as a unique archaeological resource (see CEQA Guidelines Section 15064.5(c)(3)), the archaeologist shall treat the site in accordance with the provisions of Public Resources Code Section 21083.2.

All excavations and excavation and monitoring reports shall be completed consistent with California Office of Historic Preservation’s Archeological Resources Management Reports: Recommended Contents and Format. The archaeological excavation and monitoring reports shall include all appropriate graphics, describing the results, analysis, and conclusions of the monitoring and excavation. All original maps, field notes, non-burial related artifacts, catalog information, and final reports shall be curated at a qualified institution within San Diego County, that complies with the State Historic Resource Commission’s 1993 Guidelines for the curation of archaeological collections, as applicable.

CUL-3 Unanticipated Discovery of Paleontological Resources. Prior to the commencement of project construction, CSU/SDSU, or its designee, shall retain a qualified paleontologist. The qualified paleontologist shall coordinate with the grading and excavation contractors, acting in accordance with the Society of Vertebrate Paleontology’s Guidelines, and monitor all on-site activities associated with the original cutting of previously undisturbed sediments of Moderate to High resources sensitivity in order to inspect such cuts for contained fossils.
In the event that the monitoring results in the discovery of potentially unique paleontological resources within the meaning of Public Resources Code Section 21083.2, the qualified paleontologist will have the authority to halt excavation at that location and immediately evaluate the discovery. Following evaluation, if the resource is determined to be “unique” within the meaning of Public Resources Code Section 21083.2, the site shall be treated in accordance with the provisions of that section. Mitigation appropriate to the discovered resource, including recovery, specimen preparation, data analysis, and reporting, shall be carried out in accordance with the Society of Vertebrate Paleontology guidelines prior to resuming grading activities at that location. Grading activities may continue on other parts of the building site while appropriate mitigation is implemented.

Recovered fossils, along with copies of pertinent field notes, photographs, and maps, shall be deposited in an accredited paleontological collections repository. A final summary report that discusses the methods used, stratigraphy exposed, fossils collected, and significance of recovered fossils also shall be prepared in a manner that is consistent with the Society of Vertebrate Paleontology guidelines.

CUL-4 Unanticipated Discovery of Human Remains. If, during any phase of proposed project construction, there is the discovery or recognition of any human remains in any location other than a dedicated cemetery, the following steps, which are based on Public Resources Code Section 5097.98, shall be taken (Cal. Code Regs., tit. 14, §15064.5(e)(1)):

1. There will be no further excavation or disturbance of the site or any nearby area reasonably susceptible to overlying adjacent human remains until:
 a. The San Diego County Coroner is contacted to determine that no investigation of the cause of death is required; and
 b. If the Coroner determines the remains to be Native American:
 i. The Coroner shall contact the Native American Heritage Commission within 24 hours.
 ii. The Native American Heritage Commission shall identify the person or persons it believes to be the most likely descendant from the deceased Native American; and
 iii. The most likely descendent may make recommendations to CSD/SDSU for means of treating or disposing of, with appropriate dignity, the human remains and any associated
grave goods as provided in Public Resources Code Section 5097.98, or,

2. Where the following conditions occur, CSU/SDSU, or its designee, shall rebury the Native American human remains and associated grave goods with appropriate dignity on the property in a location not subject to further subsurface disturbance (Cal. Code Regs., tit. 14, §15064.5(e)(2)):

 a. The Native American Heritage Commission is unable to identify a most likely descendant or the most likely descendant failed to make a recommendation within 24 hours after being notified by the Commission.

 b. The descendant identified fails to make a recommendation; or

 c. CSU/SDSU, or its designee, rejects the recommendation of the descendant, and mediation by the Native American Heritage Commission fails to provide measures acceptable to CSU/SDSU.
7 CUMULATIVE ANALYSIS

Potential unanticipated impacts to the integrity of previously unknown cultural resources may contribute to the overall regional decline in paleontological, archaeological, and historical evidence of past peoples and/or regional events. However, implementation of avoidance and minimization measures that are consistent with regionally accepted protocols and standards, such as described in mitigation measures CUL-1 through CUL-4 (see Section 6), would avoid potential cumulative impacts to cultural resources.
INTENTIONALLY LEFT BLANK
8 LEVEL OF SIGNIFICANCE AFTER MITIGATION

Implementation of the mitigation measures specified in Section 6 would reduce potential impacts to cultural resources to less than significant levels.
INTENTIONALLY LEFT BLANK
9 REFERENCES

Cultural Resources Technical Report for the
SDSU Engineering and Interdisciplinary Sciences Building

Harrington, J.P. 1934. “A New Original Version of Boscana’s Historical Account of the San Juan Capistrano Indians of Southern California.” Smithsonian Miscellaneous Collections 92(4).

Hector, S.M. 2007. Archaeological Investigations at University House Meeting Center and Chancellor Residence, CA-SDI-4669 (SDM-W-12), University of California at San Diego, La Jolla, California.

Cultural Resources Technical Report for the
SDSU Engineering and Interdisciplinary Sciences Building

document accessed January 13, 2015, via the SDSU Library Digital Collections.

San Diego County Board of Supervisors. 2007. County of San Diego CEQA Guidelines.

SDSU (San Diego State University). 2007a. “Aerial view of the Park Boulevard campus.”
Electronic document accessed via the SDSU Library Digital Collections.

SDSU. 2007b. “View of Montezuma Mesa campus.” Electronic document from SDSU Library
item?i=91496.

item?i=90550.

item?i=88590.

item?i=89941.

LIST OF PREPARERS

Sarah Lozano, Project Manager
Jennifer Longabaugh, Environmental Analyst
Samantha Murray, Architectural Historian
Adam Giacinto, Archaeologist
Sarah Siren, Paleontologist
Lesley Terry, GIS/Graphics
Laurel Porter, Technical Editor
Devin Brookhart, Publications Specialist Lead
Cultural Resources Technical Report for the
SDSU Engineering and Interdisciplinary Sciences Building

INTENTIONALLY LEFT BLANK
CONFIDENTIAL
APPENDIX A

SCIC Records Search Results

(Record search on file at SDSU)
CONFIDENTIAL
APPENDIX B
NAHC Sacred Lands File Search Results

(Record search on file at SDSU)
APPENDIX C
California Department of Parks and Recreation
Series 523 Forms
P1. Other Identifier:

P2. Location: □ Not for Publication ■ Unrestricted

a. County: San Diego

and (P2b and P2c or P2d. Attach a Location Map as necessary.)
b. USGS 7.5' Quad: La Mesa Date: 1967 P.R. 1975 T 16 S; R 2 W; ¼ of ¼ of Sec 15; S.B. B.M.
c. Address: 5905 Aztec Circle Drive
City: San Diego
Zip: 92182
d. UTM: NAD 83 Zone: 11S ; 493392.35mE/3626674.80mN (G.P.S.)
Google Earth
e. Other Locational Data: (e.g., parcel #, directions to resource, elevation, etc., as appropriate)
Elevation: 407 ft. above mean sea level

The subject property is located in the northeastern portion of the San Diego State University (SDSU) campus.

P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries)
The Facilities Services Building is a pre-fabricated, three-span Multiple Utility style Quonset hut. The building sits on a concrete block foundation and is sheathed in corrugated metal siding. It features groupings of multi-pane windows with awning sash openings on both the north and south elevations. Additional multi-pane windows are located on the east and west sides of the buildings, although some have been replaced with double-hung windows. The building features industrial metal roll-up doors on both the west and east elevations. SDSU building records indicate that the building was constructed and occupied by June 1947 for use as a temporary building. Noted alterations to the Facilities Services Building include: the placement of a standard size door in one of the original steel sliding/roll-up door on the front (east) elevation; infilling of an original standard size door on the front elevation; replacement of some of the original multi-pane windows throughout; the addition of wheelchair-access ramps on both sides of the building; and the installation of window air conditioning units throughout (dates of alterations unknown).

P4. Resources Present: ■Building □Structure □Object □Site □District □Element of District □Other (Isolates, etc.)

P5a. Photo or Drawing (Photo required for buildings, structures, and objects.)

P5b. Description of Photo: (View, date, accession #)
Overview of front elevation; view to southwest; 1/13/15; IMG_4497.

P6. Date Constructed/Age and Sources: ■Historic
□Prehistoric □Both
1947, SDSU building records

P7. Owner and Address:
San Diego State University
5500 Campanile Drive
San Diego, CA 92182

P8. Recorded by: (Name, affiliation, and address)
Samantha Murray
Dudek
38 N. Marengo Ave.
Pasadena, CA 91101

P9. Date Recorded: 1/13/15

P10. Survey Type: (Describe)
Intensive

P11. Report Citation: (Cite survey report and other sources, or enter "none.")
*Map Name: La Mesa

*Scale: 1:24,000

*Date of Map: 1967, P.R. 1975

*Required information
B1. Historic Name: Physical Plant Shop
B2. Common Name: Facilities Services Building; Quonset hut
B3. Original Use: physical plant shop
B4. Present Use: landscape services

*B5. Architectural Style: Utilitarian

*B6. Construction History: (Construction date, alterations, and date of alterations)
Constructed in 1947 (SDSU building records); placement of a standard size door in one of the original steel sliding/roll-up door on the front (east) elevation); infilling of an original standard size door on the front elevation; replacement of some of the original multi-pane windows throughout; addition of wheelchair-access ramps on both sides of the building; and installation of window air conditioning units throughout (dates of alterations unknown).

*B7. Moved? No ☐ Yes ☐ Unknown Date: Original Location:

*B8. Related Features:
B9a. Architect:
B9b. Builder:

*B10. Significance: Theme: Post War San Diego (1945-1959)
Property Type: Applicable Criteria: N/A
(Discuss importance in terms of historical or architectural context as defined by theme, period, and geographic scope. Also address integrity.)
The Facilities Services Building is a type of Quonset hut known as a “Multiple Utility Building,” or “Multiple Building” which was designed to expand in both directions. It is essentially an expandable version of the Utility Building style Quonset hut, but with the ability to accomplish larger spans by using a rectilinear steel frame that joined the arched roof segments via low, sloping valley gutters. The Multiple Building could be expanded endlessly using module increments measuring anywhere between 61 feet and 6 inches in width and 100 feet in length. The Quonset hut was never meant to be considered “architecture,” rather, it was seen as a convenient solution for the military and the war effort. By the end of World War II approximately 120,000 of these pre-fabricated Stran-Steel huts had been erected all over the world (Decker and Chiel 2005).

In 1946, SDSC began a program to erect new temporary offices and classrooms in an attempt to handle the massive influx of newly registered students following the end of World War II and the signing of the Servicemen Readjustment Act (also known as the G.I. Bill of Rights) in 1944. Twenty-one of the new buildings were steel-fabricated, measuring 20 by 48 feet, and two were Quonset huts measuring 40 by 100 feet. One of the Quonset huts most heavily used by students was located west of the main quadrangle near the Hardy Tower as an auxiliary reserve library to house the overflow of books from the regular reserve. It also served as a study hall. Another Quonset hut, along with five steel buildings, was placed near the old power house (the Physical Plant Boiler Shop) for use as mechanical and architectural drawing rooms (The Aztec 1946). Even more temporary buildings, including additional Quonset huts, were added to the campus in the years that followed. By 1959, numerous temporary steel buildings comprised the engineering department, including at least two other Utility style Quonset huts and series of Butler buildings, which have since been removed. In July 2012, the Physical Plant Boiler Shop was renamed Facilities Services.

Evaluation of the Facilities Services Building considered national, state, and local-level eligibility criteria. Archival research on the building failed to indicate any associations with important events. While the building is associated with the post-World War II influx of students on college campuses in California, and while it represents a period in southern California when colleges and universities were scrambling to create space for their drastically growing student bodies, it is not known to be associated within any specific events that have contributed to the history of the region or the university. See Continuation Sheet.

B11. Additional Resource Attributes: (List attributes and codes)

*B12. References: see Continuation Sheet
B13. Remarks:

*B14. Evaluator: Samantha Murray

*Date of Evaluation: 1/13/15

(This space reserved for official comments.)

Source: Google Earth 2015

*Required information
Unlike Quonset huts found on other nearby college campuses (e.g., the Quonset huts associated with Camp Matthews on the University of California, San Diego) that once had a military function, the Facilities Services Building appears to have always functioned as temporary classroom/campus storage, and does not have any connection to San Diego’s military history. As shown in Figure 1, the building was once surrounded by numerous steel temporary buildings, including other Quonset huts and Butler buildings, none of which had a military function. The building does not exemplify or reflect special elements of the university’s cultural, social, economic, political, aesthetic, engineering, landscaping or architectural development. For these reasons, the Facilities Services Building does not appear eligible for listing under NRHP Criterion A or CRHR Criterion 1.

Additionally, archival research failed to uncover any association with persons important to our past, and the property does not appear eligible for listing under NRHP Criterion B or CRHR Criterion 2.

The Stran-Steel style Quonset hut was an extremely common kit during the 1940s, with extant examples in both a military and non-military context found all over the world. The Quonset hut does not represent an architectural style, nor does it represent the notable work of a master architect. In addition, the Facilities Services Building has been slightly altered from its original appearance. For these reasons, the subject property does not appear eligible for listing under NRHP Criterion C or CRHR Criterion 3.

The subject property is unlikely to yield any information important to prehistory or history, and does not appear eligible for listing under NRHP Criterion D or CRHR Criterion 4.

In consideration of City of San Diego local-level designation criteria, the subject property does not appear to exemplify or reflect special elements of the city’s cultural, social, economic, political, aesthetic, engineering, landscaping or architectural development. It was constructed for use as a temporary building to support the post-war influx of students on campus. Therefore, the building does not appear eligible under City of San Diego Criterion A. As detailed above in consideration of national and state criteria, the subject property is not known to be associated with any significant persons or events, and does not appear eligible under City of San Diego Criterion B. As described above, the subject property does not embody the distinctive characteristics of a style and is not the work of a master architect or builder. Therefore, the building does not appear eligible under City of San Diego Criteria C or D. The subject property has never been determined eligible for listing in the NRHP or CRHR and is therefore not eligible under City of San Diego Criterion E. Finally, the subject property is not part of a historic district of resources and does not appear eligible under City of San Diego Criterion F.

References:

State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
PRIMARY RECORD

Other Listings
Review Code
Reviewer
Date

| Page 1 of 5 | Resource Name or #: Industrial Technology Building |

P1. Other Identifier:
*P2. Location: □ Not for Publication ■ Unrestricted
 *a. County: San Diego
 and (P2b and P2c or P2d. Attach a Location Map as necessary.)
 *b. USGS 7.5' Quad: La Mesa Date: 1967 P.R. 1975
 T 16 S; R 2 W; ¼ of ¼ of Sec 15; S.B. B.M.
 c. Address: 5945 and 5935 Aztec Circle Drive
 City: San Diego
 Zip: 92182
 d. UTM: NAD 83 Zone: 11S; 493411.30 mE/ 3626572.28 mN (G.P.S.)
 e. Other Locational Data: Elevation: 407 ft. above mean sea level

The subject property is located in the northeastern portion of the San Diego State University (SDSU) campus.

*P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries)
The Industrial Technology Building is a two-story building, roughly rectangular in plan, with a composition roof and concrete bulkhead, and is clad in cement plaster. Irregularly shaped endwalls reflect the Modern style. The south elevation features a series of multi-pane windows with awning sash openings, covered by metal grilles (added at a later date). The easternmost portion of the south elevation features an original overhead door with square glass panes, and an added metal roll-up door. The westernmost portion of the south elevation features wall-to-ceiling multi-pane opaque glass (replaced at unknown date), and standard doors that were once industrial metal roll-up or overhead doors. The east elevation features an outside covered patio area that was originally enclosed. The west elevation features an addition to the original 1930 Teacher’s Training School Building (present-day Physics Building) in Spanish Colonial Revival style. This addition features a Spanish tile roof, an arcade walkway that connects the Industrial Technology Building to the Physics Building, and multi-pane windows with awning sash openings. This addition creates a transition between the Modern style Industrial Technology Building with the original Spanish Colonial Revival style that comprises the NRHP-listed historic district on campus. See Continuation Sheet.

*P3b. Resource Attributes: HP15. Educational Building

*P4. Resources Present: ■Building □Structure □Object □Site □District □Element of District □Other (Isolates, etc.)

*P5a. Photo or Drawing
(Photo required for buildings, structures, and objects.)

*P5b. Description of Photo: (View, date, accession #)
Overview of front elevation; view to southwest; 1/13/15; IMG_4497.

*P6. Date Constructed/Age and Sources: □Historic □Prehistoric □Both
1953, SDSU building records

*P7. Owner and Address:
San Diego State University
5500 Campanile Drive
San Diego, CA 92182

*P8. Recorded by:
(Surname, affiliation, and address)
Samantha Murray
Dudek
38 N. Marengo Ave.
Pasadena, CA 91101

*P9. Date Recorded: 1/13/15

*P10. Survey Type: (Describe)
Intensive

*P11. Report Citation:
(Cite survey report and other sources, or enter "none.")
*Resource Name or #: Industrial Technology Building

*Map Name: La Mesa

*Scale: 1:24,000

*Date of Map: 1967, P.R. 1975

SOURCE: USGS Topo 7.5 Minute Series,
La Mesa Quadrangle
Township 16S / Range 2W / Sections 15

SUBJECT PROPERTY
State of California — The Resources Agency

DEPARTMENT OF PARKS AND RECREATION

BUILDING, STRUCTURE, AND OBJECT RECORD

Page 3 of 5

NRHP Status Code 6Z

Resource Name or # Industrial Technology Building

B1. Historic Name: Industrial Arts Building
B2. Common Name: Industrial Technology Building
B3. Original Use: education building
B4. Present Use: education building

B5. Architectural Style: Modern

B6. Construction History: (Construction date, alterations, and date of alterations)
Built in 1953 (SDSU building records); alterations observed on the south elevation include: the addition of a metal roll-up door, the installation of two sets of commercial glass pull doors that provide access to the present-day Montezuma Publishing and Custodial Services offices, the addition of fabric awnings above the commercial doors, removal of the original sawdust collector, removal of the original wood sunshade, the addition of metal grilles over the windows, the placement of industrial equipment in front of original windows, the replacement of and alteration of the original pedestrian pathway and ornamental landscaping that was once in front of the south elevation (currently a paved service road), and the addition of a small patio area with tables and benches. (dates of alterations unknown). Alterations observed on the north elevation include: replacement of all original clear multi-pane windows with opaque multi-pane windows (original panes were square, current panes are rectangular), removal of an original overhead door and installation of a standard door in the sealed opening, reconfiguration and enclosing of the original loading dock, and replacement of original metal roll-up door on the loading dock. Additional alterations include replacement of the original wooden door on the east elevation, conversion of the original eastern elevation from an enclosed space with multi-pane windows and overhead door to a covered patio area.

B7. Moved? ☑No ☐Yes ☐Unknown Date:

*B8. Related Features:

B9a. **Architect:** William Templeton Johnson and George C. Hatch
B9b. **Builder:**

B10. Significance: Theme:

Period of Significance: Post War San Diego (1945-1959) **Property Type:**

Applicable Criteria: N/A

In 1948, an article in The Aztec announced that a new science quadrangle was in the works that would include construction of both Physical Science and Industrial Arts buildings. The buildings were to be funded by the State Public Works Board (The Aztec 1948). The Industrial Arts Building (currently known as the Industrial Technology Building) was completed in 1953 to facilitate the needs of the school’s new major in the industrial arts. As stated in the Aztec newspaper: “A new major in industrial arts has been developed along with the building. The major will stress the teaching of industrial arts, not the training of students for jobs.” The Fine Arts Building (built in 1950), the Industrial Arts Building, and a new campus elementary school building, were the first post-war buildings built on the SDSC campus. The Industrial Arts Building cost approximately $500,000 and featured nine departments comprised of specialized equipment, including a materials testing lab, an electric and radio shop with three test bays, an industrial arts drafting room, a special room for display purposes and student activities, a wood work shop, a general shop especially adapted for training purposes, a graphic arts center, a general metal work shop including a foundry and welding equipment, and a transportation unit. The interior of the building included "use of color dynamics. For example, small rooms are painted tan and yellow to give an illusion of space. Since workers will be required to work on a cement floor, the walls are painted pink to give an illusion of warmth. On the other hand, the foundry is painted blue to tone down the heat" (The Aztec 1953:10). See Continuation Sheet.

B11. Additional Resource Attributes: (List attributes and codes)

B12. References: see Continuation Sheet

B13. Remarks:

B14. Evaluator: Samantha Murray

*Date of Evaluation: 1/13/15

(This space reserved for official comments.)

Source: Google Earth 2015

Required information
In 1956, two additions were completed on the Industrial Arts Building. These additions appear on plans for the Engineering Building Addition (present-day Engineering Laboratory Building). The Photographic Laboratory addition on the southwest elevation exhibits more modern, tinted windows, while the Materials Testing Laboratory addition on the northwest elevation exhibits the large multi-pane windows that once matched the original windows on the Industrial Art Building’s north elevation.

Original drawings provided by SDSU indicate that the main Industrial Arts Building was designed by architects William Templeton Johnson and George Chandler Hatch, and the addition was designed by Johnson, Hatch, and Wulff a few years later. Johnson and Hatch had worked extensively together over the years. Hatch originally worked as a chief draftsman for Johnson (1945-1947) and then the two formed the architectural firms Johnson & Hatch (1948-1949) and Johnson, Hatch, and Wulff (1950-1953, Bowker LLC 1955). The building is a very late example of Johnson in particular, who died just a few years later in 1957. William Templeton Johnson (1877-1957) is considered a master architect, standing shoulder-to-shoulder with contemporaries such as Irving Gill, Richard Requa, and Samuel Hamill (all of whom Johnson worked with), and having designed some of the most important buildings in the City of San Diego. “It is the art of Johnson that has most shaped the character of San Diego in the first half of the twentieth century principally through his public buildings” (Petersen 1971). Some of Johnson’s principal works include the San Diego Fine Arts Gallery in Balboa Park (1925), San Diego Trust Bank (1928), the Serra Museum in San Diego’s Presidio Park (1929), the Museum of Natural History in Balboa Park (1930-1933), the main U.S. Post Office in San Diego (1937), San Diego Civic Center (1938), and the main branch of the San Diego Public Library (1954).

Johnson’s first major public structure was the La Jolla Public Library and Athenaeum, which was a combination of Spanish Colonial Revival and Italian Renaissance styles. Between 1922 and 1925 he designed several private residences, La Jolla High School (including the auditorium), the now-demolished Roosevelt Jr. High School Music Building, and two private research laboratories. In 1924 he designed some of his most important works including the Fine Arts Gallery in Balboa Park (present-day San Diego Museum of Art). In 1926 he designed the first unit of the Los Apartamentos de Seville which would later become the La Valencia Hotel. In 1927 and 1928 he designed the Southern Trust and Commerce Bank and the San Diego Trust & Savings Bank Building, which is listed on the NRHP. In 1929 he designed the Junipero Serra Museum in Presidio Park and the Samuel Fox Building at Sixth Avenue and Broadway in downtown San Diego. Between 1930 and 1933 Johnson was involved in several projects in Balboa Park including the base of the El Cid Campeador statue and the design of the Museum of Natural History. Between 1935 and 1938 he designed several public buildings for national, state, and local governments including the County Administration Building (done in collaboration with Gill, Requa, and Hamill). Between 1939 and his retirement in 1955, Johnson’s firm designed numerous private residences, at least 10 school buildings (including the SDSC Master Plan) and the main branch of the San Diego Public Library (Freeley et al. 2011). Johnson is probably best known for his study and application of Spanish Revival style architecture, although his work spanned many architectural styles and movements.

George C. Hatch (1911-2006) is also an important local architect for his contribution to the design of Modern style public buildings in the San Diego region, although not to the same level of significance as Johnson. “To design public building within budget constraints, George C. Hatch believed in working from the inside out, emphasizing the practical over the picturesque” (Williams 2006). Some of Hatch’s principal works included the SDSC Master Plan (1950), Bird Rock Elementary School in San Diego (1950), SDSC Training School (1953), the main branch of the San Diego Public Library (1954), the Eugene Field Elementary School in San Diego (1955), the San Diego City Administration Building (1964), the San Diego County Water Authority Building (1968), and San Diego City Operations Building (1970). (Bowker LLC 1970). He was also involved in designing the downtown City Hall and the Reuben H. Fleet Space Center in Balboa Park, and was involved in the remodel of Café del Rey Moro and the dining terrace in Balboa Park (Williams 2006). Being over 30 years younger than Johnson, the Industrial Arts Building represents an earlier example of his work.

The 1956 addition to the Industrial Arts Building was completed by the architectural firm Johnson, Hatch, and Wulff. Franz Victor Leonard Wulff (1911-1978) worked as a Draftsman for Johnson from 1946-1949 before being promoted to Chief Draftsman (1949-1950), and was part of the Johnson, Hatch, and Wulff architectural firm from 1950-1953 before launching Wulff, Fifield & Associates. Some of his principal works include: Bird Rock Elementary School (1951), Pacific Beach Junior High School (1953), the SDSC Training School (1953), the main branch of the San Diego Public Library (1954), Chula Vista Recreation Center (1955), the San Diego northeast branch of the YMCA (1955), San Diego County General Hospital (1963), James Madison High School (1963), San Diego City Administration Building with George C. Hatch (1963), and the Old Globe Theatre addition and remodel (1966-1969, Bowker LLC 1970).

Evaluation of the Industrial Technology Building considered national, state, and local-level eligibility criteria. Archival research on the building failed to indicate any associations with important events or patterns of development. The Industrial Arts building was constructed as part of the 1950s SDSC Master Plan, which included the construction of many other buildings designed by different architects. While construction of the building falls against the backdrop of the Cold War and the national pursuit of education/advancement, it is not associated with any specific national, state, or local events. Therefore, the Industrial Technology Building does not appear eligible for listing under NRHP Criterion A or CRHR Criterion 1.
Additionally, archival research failed to uncover any association with persons important to our past, and the property does not appear eligible for listing under NRHP Criterion B or CRHR Criterion 2.

The Industrial Technology Building represents the work of master architect William Templeton Johnson and George C. Hatch, who have undoubtedly had a profound influence on the design of public buildings in San Diego, respectively. However, as described above, the building has been altered from its original form. Some of the more major alterations include: the replacement of all of the original glazing on the north elevation with opaque glass (which has greatly affected the overall look and feel of the building, which was designed to be completely transparent on the north elevation); reconfiguration and enclosing of the original loading dock on the north elevation; installation of two sets of commercial glass pull doors on the south elevation; removal of the original sawdust collector on the south elevation; and conversion of the original eastern elevation from an enclosed space with multi-pane windows and overhead door to a covered patio area.

In addition to having been subject to multiple exterior alterations, the Industrial Technology Building does not appear to be a principal work of either architect. Johnson and Hatch were known for designing some of the most important public buildings in the city (particularly Johnson), including many of the buildings located in Balboa Park. Johnson’s primary period of influence was from 1918 through the mid 1930s, when he designed some of his most important buildings, and while he was a master of many styles of architecture, he was best known for his period revival style architecture. The Industrial Arts Building represents one of his later works and was designed during a period when the firm was designing many school buildings. The Industrial Arts Building was designed to meet the needs of a budding industrial arts major at SDSC in the 1950s. Johnson and Hatch also designed other buildings on campus as part of the SDSC Master Plan in the 1950s, including the Engineering Laboratory Building (located directly to the north), and the no longer extant Campus Laboratory School Building, which was demolished in the 1990s to make way for the present-day Student Services Building. Other important local architects designed many of the SDSC buildings in the 1950s, including Samuel Hamill and Frank L. Hope.

The Industrial Arts Building has been subject to numerous alterations over the years. Additionally, it is a very late and relatively unremarkable example of Johnson’s work, and was designed during a period when his firm was designing many other school buildings. Therefore, the building does not appear eligible for listing under NRHP Criterion C or CRHR Criterion 3.

The subject property is unlikely to yield any information important to prehistory or history, and does not appear eligible for listing under NRHP Criterion D or CRHR Criterion 4.

In consideration of City of San Diego local-level designation criteria, the subject property does not appear to exemplify or reflect special elements of the city’s cultural, social, economic, political, aesthetic, engineering, landscaping or architectural development. Therefore, the building does not appear eligible under City of San Diego Criterion A. As detailed above in consideration of national and state criteria, the subject property is not known to be associated with any significant persons or events, and does not appear eligible under City of San Diego Criterion B. As described above, the Industrial Arts Building has been subject to numerous alterations over the years. Additionally, it is a late, and not a particularly notable work of Johnson, and was designed during a period when his firm was designing many other school buildings. Therefore, the building does not appear eligible under City of San Diego Criteria C or D. The subject property has never been determined eligible for listing in the NRHP or CRHR and is therefore not eligible under City of San Diego Criterion E. Finally, the subject property is not part of a historic district of resources and does not appear eligible under City of San Diego Criterion F.

P1. Other Identifier:

*P2. Location: ☐ Not for Publication ■ Unrestricted *a. County: San Diego

and (P2b and P2c or P2d. Attach a Location Map as necessary.)

*b. USGS 7.5' Quad: La Mesa Date: 1967 P.R. 1975 T 16 S; R 2 W; ¼ of ¼ of Sec 15; S.B. B.M.

P2c. Address: 5935 Aztec Circle Drive City: San Diego Zip: 92182

c. UTM: NAD 83 Zone: 11S; 493399.23 mE/3626589.26 mN (G.P.S.) Google Earth

d. Other Locational Data: (e.g., parcel #, directions to resource, elevation, etc., as appropriate) Elevation: 429 ft. above mean sea level

The subject property is located in the northeastern portion of the San Diego State University (SDSU) campus.

*P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries)
The Engineering Laboratory Building (originally known as the Industrial Arts and Engineering Building Addition) is single-story and rectangular in plan, with a composition roof, and cement plaster-clad exterior. The south elevation features a series of single panel glazed doors with upper transoms and multi-pane windows with awning sash openings (all appear to be original). Some of the original panes have been punched out for installation of window air conditioning units. The roof on the south elevation has a shed roof extension supported by metal posts, creating a covered walkway. The north elevation features a concrete bulkhead at the base with a wall of multi-pane windows with awning sash openings, and two of the original overhead doors with decorative square glass panes. The western-most portion of the covered walkway on the south elevation, and a patio area outside the north elevation, feature original concrete and wood “WPA benches” from the 1940s. These are contributing elements of the NRHP-listed SDSC Historic District. The eastern southeastern most corner of the building features a small segment of the original 1930s cobblestone-set-in-concrete-mortar retaining walls, which represent the last remaining architectural elements of the 1930 Training School Building playground (Wade et al. 1997). These walls were removed in the 1950s for construction of the new Industrial Arts and Engineering Building addition.

*P3b. Resource Attributes: HP15. Educational Building

*P4. Resources Present: ■Building □Structure □Object □Site □District □Element of District □Other (Isolates, etc.)
P5b. Description of Photo: (View, date, accession #) Overview of front elevation; view to southwest; 1/13/15; IMG_4409.

*P6. Date Constructed/Age and Sources: ■Historic □Prehistoric □Both 1956, SDSU building records

*P7. Owner and Address: San Diego State University 5500 Campanile Drive San Diego, CA 92182

*P8. Recorded by: (Name, affiliation, and address) Samantha Murray Dudek 38 N. Marengo Ave. Pasadena, CA 91101

*P9. Date Recorded: 1/13/15

*P10. Survey Type: (Describe) Intensive

*P11. Report Citation: (Cite survey report and other sources, or enter "none.") Cultural Resources Technical Report for the SDSU Engineering and Interdisciplinary Sciences Building. Prepared by Dudek, 2015.

*Attachments: ☐NONE ■Location Map ☐Sketch Map ■Continuation Sheet ■Building, Structure, and Object Record □Archaeological Record □District Record □Linear Feature Record □Milling Station Record □Rock Art Record □Artifact Record □Photograph Record □Other (List):

*Required information
*Resource Name or #: Engineering Laboratory Building

*Map Name: La Mesa

*Scale: 1:24,000

*Date of Map: 1967, P.R. 1975

SOURCE: USGS Topo 7.5 Minute Series,
La Mesa Quadrangle
Township 16S / Range 2W / Sections 15

*Required information
B1. Historic Name: Industrial Arts and Engineering Building Addition
B2. Common Name: Engineering Laboratory Building
B3. Original Use: educational building
B4. Present Use: educational building

*B5. Architectural Style: Modern

*B6. Construction History: (Construction date, alterations, and date of alterations)
Constructed in 1956 (SDSU building records). Alterations to the north elevation include removal of one of the original overhead doors (nearest to the east elevation). The entrance has been partially infilled, and a standard door added in its place. Additionally, the original loading dock ramp has been entirely removed. Other than these minor alterations, the building appears to maintain its overall integrity.

*B7. Moved? No

*B8. Related Features:
B9a. Architect: Johnson, Hatch, & Wulff
b. Builder:

*B10. Significance: Theme:
Period of Significance: Post War San Diego (1945-1959)
Property Type: Applicable Criteria: N/A

(Discuss importance in terms of historical or architectural context as defined by theme, period, and geographic scope. Also address integrity.)

On March 19, 1954, The Aztec newspaper announced that the university planned to begin construction on a new engineering building to be designed by the architectural firm Johnson, Hatch, and Wulff:

The building will be much like the Industrial Arts Building, a modern type of architecture…the building will be one story high, with a mezzanine, constructed of reinforced concrete, with concrete floors. It will be rectangular in shape, 60 by 160 feet...to provide natural lighting, the entire north wall will be of glass, excepting a small wall at the base. Three labs will be on the main floor of the building: an electrical machinery and industrial electronics lab, a fluid mechanics lab and a steam power and internal combustion engine lab…there will also be three offices and three briefing rooms, in addition to other storage space and working areas. The largest of the rooms will be the electrical machinery lab with 3,800 square feet of room (Aztec 1954:1).

The new Engineering Laboratory Building was officially dedicated on February 22, 1956, with President Malcolm A. Love formally accepting the new building during a ceremony held at the Open Air Theatre. Some of the more prestigious guests in attendance included California Governor Goodwin Knight, San Diego Mayor Charles Dail, and a variety of city councilmen, county supervisors, and state officials. As part of the dedication ceremony, San Diego industrial firms set up engineering exhibits which included mockups of ships and fighter planes by Convair, technology and training devices by the U.S. Navy, and jet models by Ryan Aircraft. The completed building consisted of 13,000 square feet of floor space and included 4 laboratories, 3 briefing rooms, 4 offices, and 5 shops/storage rooms (The Aztec 1956). The building was designed architects Johnson, Hatch, and Wulff.

See Continuation Sheet.

B11. Additional Resource Attributes: (List attributes and codes)

*B12. References: see Continuation Sheet
B13. Remarks:

*B14. Evaluator: Samantha Murray

*Date of Evaluation: 1/13/15

(This space reserved for official comments.)
Johnson and Hatch had worked extensively together over the years. Hatch originally worked as a chief draftsman for Johnson (1945-1947) and then the two formed the architectural firms Johnson & Hatch (1948-1949) and Johnson, Hatch, and Wulff (1950-1953, Bowker LLC 1955). The building is a very late example of Johnson in particular, who died just one year later in 1957. William Templeton Johnson (1877-1957) is easily considered a master architect, standing should-to-shoulder with contemporaries such as Irving Gill, Richard Requa, and Samuel Hamill (all of whom Johnson has worked with), and having designed some of the most important buildings in the City of San Diego. “It is the art of Johnson that has most shaped the character of San Diego in the first half of the twentieth century principally through his public buildings” (Petersen 1971). Some of Johnson’s principal works include the San Diego Fine Arts Gallery in Balboa Park (1925), San Diego Trust Bank (1928), the Serra Museum in San Diego’s Presidio Park (1929), the Museum of Natural History in Balboa Park (1930-1933), the main U.S. Post Office in San Diego (1937), San Diego Civic Center (1938), and the main branch of the San Diego Public Library (1954).

Johnson’s first major public structure was the La Jolla Public Library and Athenaeum, which was a combination of Spanish Colonial Revival and Italian Renaissance styles. Between 1922 and 1925 he designed several private residences, La Jolla High School (including the auditorium), the now-demolished Roosevelt Jr. High School Music Building, as well as two private research laboratories. In 1924 he designed some of his most important works including the Fine Arts Gallery in Balboa Park (present-day San Diego Museum of Art). In 1926 he designed the first unit of the Los Apartamentos de Seville that would later become the La Valencia Hotel. In 1927 and 1928 he designed the Southern Trust and Commerce Bank and the San Diego Trust & Savings Bank Building, which is listed on the NRHP. In 1929 he designed the Junipero Serra Museum in Presidio Park and the Samuel Fox Building at Sixth Avenue and Broadway in downtown San Diego. Between 1930 and 1933 Johnson was involved in several projects in Balboa Park including the base of the El Cid Campeador statue and the design of the Museum of Natural History. Between 1935 and 1938 he designed several public buildings for national, state, and local governments including the County Administration Building (done in collaboration with Gill, Requa, and Hamill). Between 1939 and his retirement in 1955, Johnson’s firm designed numerous private residences, at least 10 school buildings (including the SDSC Master Plan) and the main branch of the San Diego Public Library (1954).

George C. Hatch (1911-2006) is also an important local architect for his contribution to the design of Modern style public buildings in the San Diego region, although not to the same level of significance as Johnson. “To design public building within budget constraints, George C. Hatch believed in working from the inside out, emphasizing the practical over the picturesque” (Williams 2006). Some of Hatch’s principal works included the SDSC Master Plan (1950), Bird Rock Elementary School in San Diego (1950), SDSC Training School (1953), the main branch of the San Diego Public Library (1954), the Eugene Field Elementary School in San Diego (1955), the San Diego City Administration Building (1964), the San Diego County Water Authority Building (1968), and San Diego City Operations Building (1970). (Bowker LLC 1970). He was also involved in designing the downtown City Hall, the Reuben H. Fleet Space Center in Balboa Park, and the remodel of Café del Rey Moro and the dining terrace in Balboa Park (Williams 2006). Being over 30 years younger than Johnson, the Industrial Arts Building represents an earlier example of his work.

Franz Victor Leonard Wulff (1911-1978) worked as a Draftsman for Johnson from 1946-1949 before being promoted to Chief Draftsman (1949-1950), and was part of the Johnson, Hatch, and Wulff architectural firm from 1950-1953 before launching Wulff, Fifield & Associates. Some of his principal works include: Bird Rock Elementary School (1951), Pacific Beach Junior High School (1953), the SDSC Training School (1953), the main branch of the San Diego Public Library (1954), Chula Vista Recreation Center (1955), the San Diego northeast branch of the YMCA (1955), San Diego County General Hospital (1963), James Madison High School (1963), San Diego City Administration Building with George C. Hatch (1963), and the Old Globe Theatre addition and remodel (1966-1969, Bowker LLC 1970).

Evaluation of the Engineering Laboratory Building considered national, state, and local-level eligibility criteria. Archival research on the building failed to indicate any associations with important events or patterns of development. The Engineering Laboratory Building was constructed as part of the 1950s SDSC Master Plan, which included the construction of many other buildings designed by different architects. While construction of the building falls against the backdrop of the Cold War and the national pursuit of education/advancement, it is not associated with any specific national, state, or local events. Therefore, the Engineering Laboratory Building does not appear eligible for listing under NRHP Criterion A or CRHR Criterion 1.

Additionally, archival research failed to uncover any association with persons important to our past, and the Engineering Laboratory Building does not appear eligible for listing under NRHP Criterion B or CRHR Criterion 2.
The Engineering Laboratory Building was designed by the firm Johnson, Hatch & Wulff. All three men, Johnson most significantly, have had a profound influence on the design of public buildings in San Diego, respectively (see discussion in Section 5.2.2). However, the Engineering Laboratory Building does not appear to be a principal work of any of the architects. Johnson was known for designing some of the most important public buildings in the city, including many of the buildings located in Balboa Park. Johnson’s primary period of influence was from 1918 through the mid 1930s, when he designed some of his most important buildings, and while he was a master of many styles of architecture, he was best known for his period revival style architecture. The Engineering Laboratory Building represents one of his later works and was designed during a period when the firm was designing many school buildings. Johnson died just one year after its completion. Johnson and Hatch also designed other buildings on campus as part of the SDSC Master Plan in the 1950s, including the Industrial Arts Building (located directly to the south), and the no longer extant Campus Laboratory School Building, which was demolished in the 1990s to make way for the present-day Student Services Building. Hatch and Wulff, on the other hand, were just getting started in their careers and would go on to design many public buildings within and around San Diego in the years that followed, making a name for themselves outside the sphere of their association with Johnson. Other important local architects designed many of the SDSC buildings in the 1950s, including Samuel Hamill and Frank L. Hope. Unlike the Industrial Arts Building, which has been subject to numerous alterations over the years, the Engineering Laboratory Building has only been subject to minor exterior alterations (the extent of interior alterations is unknown). However, the building does not appear to be a principal work of the three architects and is a particularly late and relatively unremarkable example of master architect Johnson. In addition, the Engineering Laboratory Building was designed during a period when the firm was designing many other school buildings. For all of these reasons, the building does not appear eligible for listing under NRHP Criterion C or CRHR Criterion 3.

The subject property is unlikely to yield any information important to prehistory or history, and does not appear eligible for listing under NRHP Criterion D or CRHR Criterion 4.

In consideration of City of San Diego local-level designation criteria, the subject property does not appear to exemplify or reflect special elements of the city’s cultural, social, economic, political, aesthetic, engineering, landscaping or architectural development. Therefore, the building does not appear eligible under City of San Diego Criterion A. As detailed above in consideration of national and state criteria, the subject property is not known to be associated with any significant persons or events, and does not appear eligible under City of San Diego Criterion B. While the building largely maintains its integrity, it is a late, and not a particularly notable work of Johnson, and was designed during a period when his firm was designing many other school buildings. Therefore, the building does not appear eligible under City of San Diego Criterion C or D. The subject property has never been determined eligible for listing in the NRHP or CRHR and is therefore not eligible under City of San Diego Criterion E. Finally, the subject property is not part of a historic district or group of resources and does not appear eligible under City of San Diego Criterion F.

References:
The subject property is located in the northeastern portion of the San Diego State University (SDSU) campus.

The Engineering Building is four stories, T-shape in plan, with a flat roof, concrete block walls, and a smooth stucco-clad exterior.

The south elevation features three horizontal bands of windows comprised of aluminum-sash horizontal sliders, situated beneath a sharply projecting overhang which spans the length of the windows. At the center of the south elevation, there is a break in the ribbon windows with a thick band of textured stucco running from the roofline to the top the front entrance, which is recessed into a cut-out opening. The entrance on the south elevation features two original concrete and wood “WPA benches” from the 1940s, which are contributing elements of the NRHP-listed SDSC Historic District. The north side of the building also features bands of aluminum-sash sliding windows but without the projecting overhang seen on the south elevation. There is also a covered carport area along the first floor of the northeast wall, and three metal roll-up doors. The building is accessed via a main entrance on the northwest wall. The east and west endwalls feature a broad expanse of smooth stucco surface with decorative vertical bands of beige, textured stucco running from the roofline to the awning above the side entrances. Overall, the exterior of the building appears to be largely unaltered from its original form. The west elevation contains an outside patio area created in 2003, known as L3 Memorial Park.

The Engineering Building is four stories, T-shape in plan, with a flat roof, concrete block walls, and a smooth stucco-clad exterior.

The south elevation features three horizontal bands of windows comprised of aluminum-sash horizontal sliders, situated beneath a sharply projecting overhang which spans the length of the windows. At the center of the south elevation, there is a break in the ribbon windows with a thick band of textured stucco running from the roofline to the top the front entrance, which is recessed into a cut-out opening. The entrance on the south elevation features two original concrete and wood “WPA benches” from the 1940s, which are contributing elements of the NRHP-listed SDSC Historic District. The north side of the building also features bands of aluminum-sash sliding windows but without the projecting overhang seen on the south elevation. There is also a covered carport area along the first floor of the northeast wall, and three metal roll-up doors. The building is accessed via a main entrance on the northwest wall. The east and west endwalls feature a broad expanse of smooth stucco surface with decorative vertical bands of beige, textured stucco running from the roofline to the awning above the side entrances. Overall, the exterior of the building appears to be largely unaltered from its original form. The west elevation contains an outside patio area created in 2003, known as L3 Memorial Park.

The Engineering Building is four stories, T-shape in plan, with a flat roof, concrete block walls, and a smooth stucco-clad exterior.

The south elevation features three horizontal bands of windows comprised of aluminum-sash horizontal sliders, situated beneath a sharply projecting overhang which spans the length of the windows. At the center of the south elevation, there is a break in the ribbon windows with a thick band of textured stucco running from the roofline to the top the front entrance, which is recessed into a cut-out opening. The entrance on the south elevation features two original concrete and wood “WPA benches” from the 1940s, which are contributing elements of the NRHP-listed SDSC Historic District. The north side of the building also features bands of aluminum-sash sliding windows but without the projecting overhang seen on the south elevation. There is also a covered carport area along the first floor of the northeast wall, and three metal roll-up doors. The building is accessed via a main entrance on the northwest wall. The east and west endwalls feature a broad expanse of smooth stucco surface with decorative vertical bands of beige, textured stucco running from the roofline to the awning above the side entrances. Overall, the exterior of the building appears to be largely unaltered from its original form. The west elevation contains an outside patio area created in 2003, known as L3 Memorial Park.
*Resource Name or #: Engineering Building

*Map Name: La Mesa

*Scale: 1:24,000

*Date of Map: 1967, P.R. 1975

SOURCE: USGS Topo 7.5 Minute Series, La Mesa Quadrangle
Township 16S / Range 2W / Sections 15

SUBJECT PROPERTY
NRHP Status Code 6Z

Resource Name or # (Assigned by recorder) Engineering Building

B1. **Historic Name:** Engineering and Applied Science Addition; Engineering Industrial Arts Building

B2. **Common Name:** Engineering Building

B3. **Original Use:** engineering education building

B4. **Present Use:** engineering education building

B5. Architectural Style: Modern (International Style influences)

B6. Construction History: (Construction date, alterations, and date of alterations)

Constructed in 1962 (SDSU building records); no major exterior alterations noted. Removal of some original windows to install air conditioning units.

B7. Moved? ■No ☐Yes ☐Unknown Date: Original Location:

*B8. Related Features:

B9a. **Architect:** R. Foreman and A. Dennis

b. **Builder:**

*B10. Significance: Theme:

Period of Significance: 1960-1970
Property Type:
Applicable Criteria: N/A

The new $3.6 million Engineering and Applied Science Addition (also formerly known as the Engineering Industrial Arts Building) was dedicated on February 22, 1962 after being under construction for nearly two years. The building was designed by State of California architects Roland M. Foreman and A. Dennis (first name unknown) under the direction of State Architect Anson Boyd. The Daily Aztec described the new building as a four-story, 89,000 square foot building with three laboratories, including a wind tunnel, vibrations laboratory, and cryogenics laboratory. The new building consolidated a number of facilities that were once scattered throughout the campus in six different buildings (San Diego Daily Aztec 1962).

Evaluation of the Engineering Building considered national, state, and local-level eligibility criteria. Archival research on the building failed to indicate any associations with important events or patterns of development. While the Engineering Building does represent an important development in the advancement of engineering education on campus, the big Cold War-era push to develop science, technology, and engineering facilities in the San Diego area is most significantly tied to the establishment of UCSD in 1960 (City of San Diego 2007). Therefore, the Engineering Building does not appear eligible for listing under NRHP Criterion A or CRHR Criterion 1.

Additionally, archival research failed to uncover any association with persons important to our past, and the Engineering Building does not appear eligible for listing under NRHP Criterion B or CRHR Criterion 2.

The Engineering Building is Modern style building exhibiting International style design elements including its rectangular plan, horizontal bands of windows, strong right angles, and use of simple building materials such as concrete, smooth stucco, brick, and glass. It is a late example of these stylistic elements, which have a period of significance in the San Diego region between 1935 and 1955 (City of San Diego 2007). At the time of its construction in 1962, project architect Roland M. Foreman from Sacramento had designed several other education buildings including the science building on the campus of San Fernando Valley State College and the administration building at California State Polytechnic College (Bowker LLC 1962). No information was found regarding the other project architect, A. Dennis. Neither Foreman nor Dennis appear to be considered master architects. While the Engineering Building appears to maintain integrity of its original design, it does not appear to be a particularly notable example of the International style, of which extant examples can be found throughout college campuses in southern California, often designed by master architects. For these reasons, the Engineering Building does not appear eligible for listing under NRHP Criterion C or CRHR Criterion 3. See Continuation Sheet.

B11. **Additional Resource Attributes:** (List attributes and codes)

*B12. References:** see Continuation Sheet

B13. **Remarks:**

*B14. Evaluator:** Samantha Murray

*B15. Date of Evaluation:** 1/13/15

(This space reserved for official comments.)

Source: Google Earth 2015
The subject property is unlikely to yield any information important to prehistory or history, and does not appear eligible for listing under NRHP Criterion D or CRHR Criterion 4.

In consideration of City of San Diego local-level designation criteria, the subject property does not appear to exemplify or reflect special elements of the city’s cultural, social, economic, political, aesthetic, engineering, landscaping or architectural development. The City of San Diego’s historic context statement on modernism (2007) describes the establishment of UCSD in 1960 as fulfilling the region’s need for “a world class science and engineering graduate school in the La Jolla area,” and does not make mention of the developments at SDSC during this time. Therefore, the building does not appear eligible under City of San Diego Criterion A.

As detailed above in consideration of national and state criteria, the subject property is not known to be associated with any significant persons or events, and does not appear eligible under City of San Diego Criterion B. The Engineering building exhibits elements of the International Style, however, it is not a “true” example of the style and it falls outside the period of significance for the style in San Diego. It is also not the product of a master architect in the region. Therefore, the building does not appear eligible under City of San Diego Criteria C or D. The subject property has never been determined eligible for listing in the NRHP or CRHR and is therefore not eligible under City of San Diego Criterion E. Finally, the subject property is not part of a historic district or group of resources and does not appear eligible under City of San Diego Criterion F.

References:
P1. Other Identifier: Computer Applied Mechanics

P2. Location:
- **Not for Publication**
- **Unrestricted**
- **a. County:** San Diego
- **b. USGS 7.5' Quad:** La Mesa
- **Date:** 1967 P.R. 1975
- **c. Address:** 5915 Aztec Circle Drive
- **City:** San Diego
- **Zip:** 92182
- **d. UTM: NAD 83 Zone:** 11S; 3626666.80 mN (G.P.S.)
- **e. Other Locational Data:** Elevation: 407 ft. above mean sea level

The CAM Center Building is a small single-story building, rectangular in plan, with a flat roof, and painted concrete block walls. Fenestration consists of steel casement windows throughout, two metal entry doors located on the west elevation, and a metal roll-up door adjacent to a parking space on the east elevation. The building is very plain and contains no ornamentation. Portions of the north and east elevations are landscaped with a variety of succulent plants. The building was designed by the same state architects who designed the Engineering Building (Foreman and Dennis). Alterations include an addition to the south elevation in the late 1960s (to include the section with the roll-up door and driveway).

P3a. Description:
(Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries)

The CAM Center is a small single-story building, rectangular in plan, with a flat roof, and painted concrete block walls. Fenestration consists of steel casement windows throughout, two metal entry doors located on the west elevation, and a metal roll-up door adjacent to a parking space on the east elevation. The building is very plain and contains no ornamentation. Portions of the north and east elevations are landscaped with a variety of succulent plants. The building was designed by the same state architects who designed the Engineering Building (Foreman and Dennis). Alterations include an addition to the south elevation in the late 1960s (to include the section with the roll-up door and driveway).

P3b. Resource Attributes: HP8. Industrial Building; HP15. Educational Building

P4. Resources Present:
- **Building**
- **Structure**
- **Object**
- **Site**
- **District**
- **Element of District**
- **Other** (Isolates, etc.)

P5a. Photo or Drawing: (Photo required for buildings, structures, and objects.)

P5b. Description of Photo: Overview of front elevation; view to northwest; 1/13/15; IMG_4492.

P6. Date Constructed/Age and Sources:
- **Historic**
- **Prehistoric**
- **Both**
- 1962, SDSU building records

P7. Owner and Address:
San Diego State University
5500 Campanile Drive
San Diego, CA 92182

P8. Recorded by:
Samantha Murray
Dudek
38 N. Marengo Ave.
Pasadena, CA 91101

P9. Date Recorded: 1/13/15

P10. Survey Type: Intensive

P11. Report Citation: Cultural Resources Technical Report for the SDSU Engineering and Interdisciplinary Sciences Building. Prepared by Dudek, 2015.

Attachments:
- NONE
- Location Map
- Sketch Map
- Continuation Sheet
- Building, Structure, and Object Record
- Archaeological Record
- District Record
- Linear Feature Record
- Milling Station Record
- Rock Art Record
- Artifact Record
- Photograph Record
- Other (List):
*Resource Name or #: CAM Center Building

*Map Name: La Mesa

*Scale: 1:24,000

*Date of Map: 1967, P.R. 1975

SOURCE: USGS Topo 7.5 Minute Series, La Mesa Quadrangle
Township 16S / Range 2W / Sections 15

SUBJECT PROPERTY

DPR 523J (1/95)

*Required information
The CAM Center Building was constructed at the same time as the large four-story Engineering Building to the south, and was designed by the same State of California project architects, Foreman and Dennis. It was originally known as the Engine Test Cell and Switch Gear Building. No additional background information regarding the building was discovered.

Evaluation of the CAM Center Building considered national, state, and local-level eligibility criteria. Archival research on the building failed to indicate any associations with important events or patterns of development. Therefore, the CAM Center Building does not appear eligible for listing under NRHP Criterion A or CRHR Criterion 1.

Additionally, archival research failed to uncover any association with persons important to our past, and the CAM Center Building does not appear eligible for listing under NRHP Criterion B or CRHR Criterion 2.

The CAM Center Building is a simple, ubiquitous utility building that is not indicative of any particular style. This type of building was not designed to be noticed. Rather, it was designed to blend in with its surroundings as evidenced by a total lack of ornamentation. It is not the notable work of a master architect, and it was altered in the late 1960s to incorporate an addition to the south elevation. For these reasons, the CAM Center Building does not appear eligible for listing under NRHP Criterion C or CRHR Criterion 3.

The subject property is unlikely to yield any information important to prehistory or history, and does not appear eligible for listing under NRHP Criterion D or CRHR Criterion 4. See Continuation Sheet.

B11. Additional Resource Attributes: (List attributes and codes)

*B12. References:

B13. Remarks:

*B14. Evaluator: Samantha Murray

*Date of Evaluation: 1/13/15
In consideration of City of San Diego local-level designation criteria, the subject property does not appear to exemplify or reflect special elements of the city's cultural, social, economic, political, aesthetic, engineering, landscaping or architectural development. Therefore, the building does not appear eligible under City of San Diego Criterion A. As detailed above in consideration of national and state criteria, the subject property is not known to be associated with any significant persons or events, and does not appear eligible under City of San Diego Criterion B. As described above, the CAM Center Building is a ubiquitous utility building and does not represent the notable work of a master architect. Therefore, the building does not appear eligible under City of San Diego Criteria C or D. The subject property has never been determined eligible for listing in the NRHP or CRHR and is therefore not eligible under City of San Diego Criterion E. Finally, the subject property is not part of a historic district or group of resources and does not appear eligible under City of San Diego Criterion F.