Journals of Interest - Mathematics and Science Education

April 2017

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Journal</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educational Researcher</td>
<td>2</td>
</tr>
<tr>
<td>Volume 46, Issue 2</td>
<td>2</td>
</tr>
<tr>
<td>Educational Studies in Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>Volume 95, Issue 1, Pages 1-122</td>
<td>3</td>
</tr>
<tr>
<td>Mathematical Thinking and Learning</td>
<td>4</td>
</tr>
<tr>
<td>Volume 19, Issue 2</td>
<td>4</td>
</tr>
<tr>
<td>Journal of Research in Science Teaching</td>
<td>5</td>
</tr>
<tr>
<td>Volume 54, Issue 4, Pages 435-551</td>
<td>5</td>
</tr>
<tr>
<td>International Journal of Science Education</td>
<td>6</td>
</tr>
<tr>
<td>Volume 39, Issue 4</td>
<td>6</td>
</tr>
<tr>
<td>Science Education</td>
<td>7</td>
</tr>
<tr>
<td>Volume 101, Issue 2</td>
<td>7</td>
</tr>
<tr>
<td>International Journal of Mathematical Education in Science and Technology</td>
<td>8</td>
</tr>
<tr>
<td>Volume 48, Issue 5</td>
<td>8</td>
</tr>
<tr>
<td>The Journal of Mathematical Behavior</td>
<td>9</td>
</tr>
<tr>
<td>Volume 46(In Progress)</td>
<td>9</td>
</tr>
<tr>
<td>Research in Mathematics Education</td>
<td>10</td>
</tr>
<tr>
<td>Volume 19, Issue 1</td>
<td>10</td>
</tr>
<tr>
<td>Journal for Research in Mathematics Education</td>
<td>11</td>
</tr>
<tr>
<td>Volume 48, Issue 2(Current Issue)</td>
<td>11</td>
</tr>
<tr>
<td>International Journal of Research in Undergraduate Mathematics Education</td>
<td>12</td>
</tr>
<tr>
<td>Volume 3, Issue 1</td>
<td>13</td>
</tr>
<tr>
<td>Journal of Mathematics Teacher Education</td>
<td>14</td>
</tr>
<tr>
<td>Volume 20, Issue 2</td>
<td>14</td>
</tr>
<tr>
<td>Volume 20, Issue 3</td>
<td>14</td>
</tr>
<tr>
<td>Educational Psychologist</td>
<td>15</td>
</tr>
<tr>
<td>Volume 52, Issue 2</td>
<td>15</td>
</tr>
</tbody>
</table>
Improving Admission of Low-SES Students at Selective Colleges: Results From an Experimental Simulation
Michael N. Bastedo, Nicholas A. Bowman.

Literacy Achievement Trends at Entry to First Grade
Jerome V. D’Agostino, Emily Rodgers.

Common Core State Standards for ELA/Literacy and Next Generation Science Standards: Convergences and Discrepancies Using Argument as an Example
Okhee Lee.

Racial and Socioeconomic Gaps in Executive Function Skills in Early Elementary School: Nationally Representative Evidence From the ECLS-K:2011
Michael Little.
Educational Studies in Mathematics

Volume 95, Issue 1, Pages 1-122

The secondary-tertiary transition viewed as a change in mathematical cultures: an exploration concerning symbolism and its use
Pages 1-19
Claudia Corriveau, Nadine Bednarz.

A characterization of a unified notion of mathematical function: the case of high school function and linear transformation
Pages 21-38
Michelle Zandieh, Jessica Ellis, Chris Rasmussen.

Dialogue between theories interpreted as research praxeologies: the case of APOS and the ATD
Pages 39-52
Marianna Bosch, Josep Gascon, Maria Trigueros.

Making a drawing. Effects of strategic knowledge, drawing accuracy, and type of drawing on students’ mathematical modelling performance.
Pages 53-78
Johanna Rellensmann, Stanislaw Schukajlow, Claudia Leopold.

We all as a family are graduating tonight: a case for mathematical knowledge for parental involvement
Pages 79-95
Andrea Knapp, Racheal Landers, Senfeng Liang, Vetrece Jefferson.

Astonishment: a post-constructivist investigation into mathematics as passion.
Pages 97-111
Wolff- Michael Roth

BookReview
Pages 113-122
Brian Greer
Mathematical Thinking and Learning

Volume 19, Issue 2

Classroom Interactions Around Problem Context and Task Authenticity in Middle School Mathematics
Jamie L.W. Wernet

Between Counting and Multiplication: Low-Attaining Students’ Spatial Structuring, Enumeration and Errors in Concretely-Presented 3D Array Tasks
Carla Finesilver.

Conceptualizing Perseverance in Problem Solving as Collective Enterprise
Tesha Sengupta-Irving, Priyanka Agarwal.

Book Review
Nenad Radakovic, Limin Jao
Science education research thrives in an open, global community
Pages 437-438
Dana L. Zeidler, Fouad Abd-El-Khalick.

Pushing and pulling Sara: A case study of the contrasting influences of high school and university experiences on engineering agency, identity, and participation
Pages 439-462
Allison Godwin, Geoff Potvin.

Do teaching assistants matter? Investigating relationships between teaching assistants and student outcomes in undergraduate science laboratory classes
Pages 463-492
Lindsay B. Wheeler, Jennifer L. Maeng, Jennie L. Chiu, Randy L. Bell.

Evolution acceptance and epistemological beliefs of college biology students
Pages 493-519
Lisa A. Borgerding, Hasan Deniz, Elizabeth Shevock Anderson.

Factors contributing to students’ misconceptions in learning covalent bonds
Pages 520-537
Erman Erman.

A case for the use of conceptual analysis in science education research
Pages 538-551
Sami Kahn, Dana L. Zeidler.
Consistency of nature of science views across scientific and socio-scientific contexts
Rola Khishfe

The role of questions in the science classroom—how girls and boys respond to teachers’ questions
Nina Eliasson, Karl Goran Karlsson, Helene Sorensen.

The role of feedback in young people’s academic choices
Yvonne Skipper, Patrick J. Leman

Sources of difficulty in assessment: example of PISA science items
Florence Le Hebel, Pascale Montpied, Andree Tiberghien, Valerie Fontanieu.

Empirical validation of a modern genetics progression web for college biology students
Amber Todd, William L. Romine.
(Editorial) Examples, Illustrations & Evidence: Research Written to Guide and Inform Readers
Pages 203-208
Sherry A. Southerland, John Settlage.

Evidence of Middle School Science Assessment Practice From Classroom-Based Portfolios
Pages 209-231
Matthew Kloser, Hilda Borko, Jose Felipe Martinez, Brain Stecher, Rebecca Luskin.

Can Engaging in Science Practices Promote Deep Understanding of Them?
Pages 232-250
Deanna Kuhn, Toi Sin Arvidsson, Rosiane Lesperance, Rainikka Corprew.

Designing for Family Science Explorations Anytime, Anywhere
Pages 251-277
Megan R. Luce, Shelley Goldman, Tanner Vea.

Values Underpinning STEM Education in the USA: An Analysis of the Next Generation Science Standards
Pages 278-301
Darren G. Hoeg, John Lawrence Bencze.

Secondary Biology Textbooks and National Standards for English Learners
Pages 302-322
Leigh K. Smith, Joseph H. Hanks, Lynnette B. Erickson.

Aligning Coordination Class Theory With a New Context: Applying a Theory of Individual Learning to Group Learning
Pages 333-363
Lauren A. Barth-Cohen, Michael C. Wittmann.
Flip or flop? Students’ perspectives of a flipped lecture in mathematics
Julia Novak, Barbara Kensington-Miller, Tanya Evans.

Prospective and current secondary mathematics teachers’ criteria for evaluating mathematical cognitive technologies
Ryan C. Smith, Dongjo Shin, Somin Kim.

Use of words and visuals in modelling context of annual plant
Jungeun Park, Joseph DiNapoli, Robert A. Mixwell, Alfinio Flores.

A model of professional competences in mathematics to update mathematical and didactic knowledge of teachers
Veronica Diaz, Alvaro Poblete.

Problematic topics in first-year mathematics: lecturer and student views
Caitriona Ni She, Ciaran Mac an Bhaird, Eabhnat Ni Fhloinn, Ann O’Shea.

Pre-constructed dynamic geometry materials in the classroom—how do they facilitate the learning of ‘Similar Triangles’?
Kin Keung Poon, Kwan Lam Wong.

Classroom Notes
Pages 756-808
Various authors.

Corrigendum
Page: i
The effect of rewording and dyadic interaction on realistic reasoning in solving word problems
Maria Mellone, Lieven Verschaffel, Wim Van Dooren.

Students’ understanding of the relation between tangent plane and directional derivatives of functions of two variables
Rafael Martinez-Planell, Maria Trigueros Gaisman, Daniel McGee.

Simulating student aesthetic response to mathematical problems by means of manipulating the extent of surprise
Boris Koichu, Efim Katz, Avi Berman.

Field-based hypotheses on advancing standards for mathematical practice
Guershon Harel.

The learning and teaching of linear algebra: Observations and generalizations
Guershon Harel.

Students’ geometric thinking with cube representations: Assessment framework and empirical evidence
Taro Fujita, Yutaka Kondo, Hiroyuki Kumakura, Susumu Kunimune.
Research in Mathematics Education

Volume 19, Issue 1

Students’ conceptualisations of function revealed through definitions and examples
Michael Ayalon, Anne Watson, Steve Lerman.

Support with caveats: advocates’ views of the Theory of Formal Discipline as a reason for the study of advanced mathematics
Elaine Wainwright, Nina Attridge, David Wainwright, Lara Alcock, Matthew Inglis.

Teachers’ mathematics as mathematics-at-work
Nadine Bednarz, Jerome Proulx.

In which ways and to what extent do English and Shanghai students understand linear function?
Yuqian Wang, Patrick Barmby, David Bolden.

Report
Pages 91-96
Various authors.

Book review
Pages 97-101
Cathy Smith.
(Editorial) Clarifying the Impact of Educational Research on Students’ Learning
Jinfa Cai, Anne Morris, Charles Hohensee, Stephen Hwang, Victoria Robison, James Hiebert, University of Delaware.

Equity Within Mathematics Education Research as a Political Act: Moving From Choice to Intentional Collective Professional Responsibility
Julia Aguirre, University of Washington Tacoma; Beth Herbel-Elsenmann, Michigan State University; Sylvia Celedon-Pattichis, University of New Mexico; Marta Civil, University of Arizona; Trena Wilkerson, Baylor University; Michelle Stephan, University of North Carolina- Charlotte; Stephen Pape, John Hopkins University; Douglas H. Clements, University of Denver.

Field Experience and Prospective Teachers’ Mathematical Knowledge and Beliefs
Erik D. Jacobson, Indiana University.

Clock Work: How Tools for Time Mediate Problem Solving and Reveal Understanding
Darrell Earnest, University of Massachusetts, Amherst.

(Book review) Large- Scale Data, Big Possibilities: A Review of Large- Scale Studies in Mathematics Education
Emily Miller, West Chester University, Martha Markowski, University of Illinois at Urbana- Champaign, Yasemin Copur- Gencturk, University of Southern California, Sarah Lublenski, University of Illinois at Urbana- Champaign.
International Journal of Research in Undergraduate Mathematics Education

Volume 3, Issue 1

Oberwolfach Papers on Mathematics in Undergraduate Study Programs: Challenges for Research

Rolf Biehler, Reinhard Hochmuth.

RE: Conceptualization of the Continuum, an Educational Challenge for Undergraduate Students by Viviane Durand-Guerrier

Chris Rasmussen.

Task Design for Students’ Work with Basic Theory in Analysis: the Cases of Multidimensional Differentiability and Curve Integrals

Katrine Frovin Gravesen, Niels Gronbaek, Carl Winslow.

Designing Tasks of Introductory Real Analysis to Bridge a Gap Between Students’ Intuition and Mathematical Rigor: the Case of the Convergence of a Sequence

Kyeong Hah Roh, Yong Hah Lee.

“Much Palaver About Greater Than Zero and Such Stuff”- First Year Engineering Students’ Recognition of University Mathematics

Eva Jablonka, Hoda Ashjari, Christer Bergsten.

Determinants of Maths Performance of First-Year Business Administration and Economics Students

Anglea Laging, Rainer VoBkamp.

Is there a link between Preparatory Course Attendance and Academic Success? A Case Study of Degree Programmes in Electrical Engineering and Computer Science

Gilbert Greefrath, Wolfram Koepef, Christoph Neugebauer.

Critical Theorising from Studies of Undergraduate Mathematics Teaching for Students’ Meaning Making in Mathematics

Barbara Jaworski, Angeliki Mali, Georgia Petropoulou.

University Teachers’ Resources Systems and Documents

Ghislaine Gueudet.
Structural Reasoning
Guershon Harel, Osvaldo Soto.

ISBN: 978-1-4704-2552-4
Sean Larsen.
Unpacking personal identities for teaching mathematics within the context of prospective teacher education
Thomas E. Hodges, Lynn Liao Hodge.

Building the wall brick by brick: one prospective teacher’s experiences with mathematics anxiety
Kathleen Jablon Stoehr.

Prospective teachers navigating intersecting communities of practice: early school placement
Yvette Solomon, Elisabeta Eriksen, Bjorn Smestad, Camilla Rodal, Annette Hessen Bjerke.

Prospective and in-service teachers’ perspectives about launching a problem
Gloriana Gonzalez, Jennifer A. Eli

Understanding elementary school teachers of mathematics
Olive Chapman.

Prospective elementary teachers’ aesthetic experience and relationships to mathematics
Rong-Ji Chen.

Preparing elementary prospective teachers to teach early algebra
Charles Hohensee.

Characterizing a highly accomplished teacher’s noticing of third-grade students’ mathematical thinking
Rukiye Didem Taylan.

Learning to teach mathematics specialists in a synchronous online course: a self-study
Maragret A. Hjalmarsone.
Educational Psychologist

Volume 52, Issue 2

Developmental Systems of Students’ Personal Theories About Education
Michael M. Barger, Lisa Linnenbrink-Garcia.

Processing Fluency in Education: How Metacognitive Feelings Shape Learning, Belief, Formation, and Affect
Rolf Reber, Rainer Greifeneder.

Advanced, Analytic, Automated (AAA) Measurement of Engagement During Learning
Sidney D’Mello, Ed Dieterle, Angela Duckworth.

Beyond Phonics: The Case for Teaching Children the Logic of the English Spelling System
Jeffrey S. Bowers, Peter N. Bowers